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      Preface  

   Physics is both a theoretical and an experimental science. We need theories to develop 
an understanding of nature, and experiments to verify our theories. Nowhere in phys-
ics is the interplay between theory and experiment more important than in quantum 
mechanics, because the theory is frequently counterintuitive (if not outright mind-
boggling), making experimental verifi cation all the more important. 

 The goal of this book is to explicate some of the theoretical and experimental aspects 
of quantum mechanics, at the level of a junior or senior undergraduate. (I assume a 
previous exposure to quantum mechanics at the level of a “Modern Physics” course.) 
The book contains 17 chapters that describe the theoretical underpinnings of quantum 
mechanics, and 5 laboratories that allow one to observe experimental confi rmation of 
aspects of the theory. The experiments include: “Proving” that light contains photons, 
single-photon interference, and tests of local realism. 

 The experiments all examine the behavior of single photons and photon pairs, so in 
order to coordinate the laboratories and the text, the text introduces the formalism of quan-
tum mechanics using photon polarization. This has several advantages, in addition to con-
necting with the labs. Polarization is a two-dimensional system, so the mathematics is 
straightforward, making it a good starting point. The quantum description of polarization 
also has strong analoges in the classical description (presented in chap. 2), which makes 
understanding the physics easier. Once the formalism of quantum mechanical states and 
operators has been introduced using polarization, the text goes on to describe spin systems, 
time evolution, continuous variable systems (particle in a box, harmonic oscillator, hydro-
gen atom, etc.), and perturbation theory. Along the way important topics such as quantum 
measurement (chap. 5) and entanglement (chap. 8) are discussed. The text also includes 
introductions to quantum fi eld theory (chap. 16) and quantum information (chap. 17). 

 While most of the text follows sequentially as presented, the material in chap. 17 
(Quantum Information) may be covered at any point after the material in chap. 8 (Two-
Particle Systems and Entanglement). 

 Some of the end-of-chapter problems are marked with an *. These problems illus-
trate important ideas or prove relationships that are only alluded to in the text, or are 
simply more challenging problems. A solutions manual is available for instructors. 



xx • P R E F A C E

 Some of the chapters have complements, which serve as appendices for the chap-
ters. Most of the material in these complements is supplementary, and instructors can 
skip them without impairing their ability to cover material in later chapters. The excep-
tions to this are complements 2.A and 10.A. Also, complement 8.C needs to be covered 
before discussing hyperfi ne structure in sec.14.4. 

 The fi rst two laboratories can be performed after the material in chapt. 2 has been 
covered. Lab 3  can  be performed after chap. 3, but it will be better appreciated after 
covering the material in chap. 5. Lab 4 requires complement 5.A, and lab 5 requires 
complement 8.B. The book website (www.oup.com/us/QuantumMechanics) and my 
website (http://www.whitman.edu/~beckmk/QM/) contain supplementary information 
(equipment lists, etc.) regarding the laboratories. 

 I’d like to acknowledge the people from whom I learned quantum mechanics, espe-
cially Mike Raymer, Carlos Stroud, Ian Walmsley, Joe Eberly, and Leonard Mandel. I’d 
also like to acknowledge the books that have been most infl uential in shaping the way 
that I think about quantum mechanics:  Introduction to Quantum Mechanics  by David 
J. Griffi ths,  A Modern Approach to Quantum Mechanics  by John S. Townsend (from 
which I borrowed the idea for the “Experiments” in chaps. 3 and 6), and  Quantum 
Mechanics  by Claude Cohen-Tannoudji, Bernard Diu, and Franck Laloë (from which I 
borrowed the idea of chapter complements). 

 Funding for the development of the laboratories came from the National Science 
Foundation and Whitman College. A number of people contributed to the development 
of the laboratories, including David Branning, Alex Carlson, Robert Davies, Vinsunt 
Donato, Enrique Galvez, Ashifi  Gogo, Jesse Lord, Morgan Mitchell, Matt Neel, Larry 
North, Matt Olmstead, Will Snyder, and Jeremy Thorn. 

 I’d also like to thank the people who read and commented on parts of the manu-
script: Andrew Dawes, Peter Doe, John Essick, Warren Grice, Kurt Hoffman, Doug 
Hundley, Doug Juers, Shannon Mayer, Fred Moore, Sarah Nichols, Mike Raymer, Jay 
Tasson, and Steven van Enk. 

 Finally, I’d like to thank the people at Oxford University Press and TNQ, especially 
my editor Phyllis Cohen, for their hard work in making this project a success. 

 M.B. 
 Walla Walla, WA 
 August 2011     

http://www.whitman.edu/~beckmk/QM/
www.oup.com/us/QuantumMechanics
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         CHAPTER 1 

Mathematical Preliminaries  

    Before beginning a discussion of quantum mechanics, it’s useful to review some topics 
from mathematics and classical physics. In this chapter we’ll go over some areas of 
probability theory and linear algebra that we’ll fi nd useful later. You may be familiar 
with the concepts presented here, but I suggest that you read through this chapter, if 
only to familiarize yourself with the notation and terminology we’ll be using. 

      1.1    PROBABILITY AND STATISTICS     

   1.1.1    Moments of Measured Data   

 We want to measure a quantity  x , which is a property of some object. So, we break out 
our  x -meter and make measurements, getting  N  values of  x :  1mx  ,  2mx  , etc. We’re using 
the subscript  m  here to indicate that these are measured values. Collectively we’ll refer 
to these measurements as  m ix  , where  1,2, ,i N  . 

 We can calculate the average of   x ,  x �, by adding up the measured values and divid-
ing by the number of measurements:

  
1

1 N

m i
i

x x
N

 . (1.1)

We’ll use the bracket symbol � . . . � to denote an average; it represents the average of 
whatever is inside the brackets. We’ll also refer to � x � as the mean of  x . We can calcu-
late the average of � nx �, � nx �, by simply using the defi nition of the average 

  �
1

1 N nn
m i

i

x x
N

�. (1.2)
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Another name for � nx �  n th  -order moment of  x . 
 Remember, the brackets � . . . � mean that we average  whatever quantity  is inside the 

brackets. We calculate this average by adding up the values and dividing by the number 
of measurements. The average of a function of  x , �f x �, is thus

 �
1

1 N

m i
i

f x f x
N

�. (1.3)

The average is linear. This means that

 � 1 1 2 2 1 1 2 2A f x A f x A f x A f x �, (1.4)

Where � 1A � and � 2A � are constants. 
 Frequently, we’re interested in how far a typical measured value might be from the 

mean value. Let’s defi ne the deviation from the mean as

 � x x x �. (1.5)

The average of this quantity is 0, so it is not a good measure of the fl uctuations:

 � 0x x x x x x x �. (1.6)

Here we have used both the linearity property [eq. (1.4)] and the fact that once a quan-
tity has been averaged it becomes a constant. The average of a constant is the constant. 
� x � is not a good measure of the fl uctuations, because roughly half the time it’s posi-
tive, and half the time it’s negative, so it averages zero. To overcome this problem, we 
can average the square of � x�. Calculating this, we see that

 �

22

22

22

22

22

2

2

2

.

x x x

x x x x

x x x x

x x x x

x x

� (1.7)

The variance of  x , � 2x �, is defi ned as

 � 222 2x x x x �. (1.8) 

 The standard deviation of  x , � x�, is the square root of the variance:
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 �
1/ 222 2x x x x �. (1.9)

The standard deviation is a measure of how far a particular measurement is likely to be 
from the mean, and we will use it to quantify the uncertainty in a series of measurements.   1    

 EXAMPLE 1.1 
 Measurements of  x  yield the values

 � 9,5, 25, 23,10, 22,8,8, 21,20 1,...,10m ix i �. (1.10)

Calculate the mean and standard deviation of this data. 
 To calculate the mean of  x  we use eq. (1.1):

 � 1 9 5 25 23 10 22 8 8 21 20 15.1
10

x �. (1.11)

In order to calculate the standard deviation, we fi rst need to calculate � 2x �. Using eq. 
(1.2) we fi nd

� 2 2 2 2 2 2 2 2 2 2 21 9 5 25 23 10 22 8 8 21 20 281.3
10

x �. (1.12)

Substituting these results into eq. (1.9) yields

 �
1/ 22281.3 15.1 7.3x �. (1.13)

Using the standard deviation as the uncertainty of the measurements, we say that 
� 15.1 7.3x � .    

   1.1.2    Probability   

 Let’s look at the data from example 1.1 [eq. (1.10)] a little differently, by creating a 
histogram of the data. We break the full range of the data into  M  segments, known as 
bins. The bins have equal widths, and we’ll label them as � 1, 2,...,jx j M �. Note that 
there’s no subscript  m  on � jx �, because we’re labeling an  x  value corresponding to a bin 
(which is a value that  could  have been measured), not a particular measured value. We 
sort individual measurements into bins, then count the number of measurements in 
each bin, � jN x �. This process, known as histogramming, is best illustrated with an 
example. 

   1.     Frequently the variance will be defi ned with a normalization factor of 1/( N –1) in front of the sum 
in eq. (1.3) instead of 1/ N , which makes the normalization factor for the standard deviation   1 / 1N  . For 
details on why this is the case, see secs. 8.1 and 10.2 of ref.   [1.1]  . The choice of   1 / 1N   is common in 
calculators and spreadsheets. In the limit of large  N  the difference is insignifi cant. In this book we’ll assume 
a 1/ N  normalization. 
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 EXAMPLE 1.2 
 Create a histogram of the data from example 1.1. 

 The data values range from 5 to 25; let’s break this interval into 7 equal-width bins. The 
fi rst bin contains measurements which yield  x  values of 5, 6, and 7, and we’ll label it bin 
� 1 6x �, corresponding to the center value. Bin � 2 9x � contains values 8, 9 and 10, and so 
on. 

 Examining the data in eq. (1.10), we fi nd that one measurement yields a value of 5, 
6, or 7. Thus, the number of measurements in bin � 1 6x � is � 6 1N �. Four of our meas-
urements fall in the second bin (holding values 8, 9, and 10) so  9 4N  . Continuing 
on in this vein, we can fi nd the rest of the histogram values. A plot of the histogram is 
shown in  fi g.  1.1  .     

 Histograms allow us to estimate the probability that we will obtain a particular 
measurement. The probability  jP x   that a measurement will fall into a particular bin 
 jx   is simply the ratio of the number of measurements in that bin to the total number of 
measurements. In other words

   j
j

N x
P x

N
 . (1.14)

The probability distribution corresponding to the histogram calculated in example 1.2 
is plotted in  fi g.  1.1  . As can be seen, the probability distribution is a scaled version of 
the histogram. 

 Summing all the histogram values must yield the total number of measurements  N . 
If the histogram has  M  bins then

  1

1

1

M

jM
j

j
j

N x
NP x

N N
 . (1.15)

Our probability is properly normalized, which means that the sum of the probabilities 
is 1. 

       
  Fig 1.1     The histogram calculated in example 1.2 is plotted on the left axis, while the corre-
sponding probability distribution is plotted on the right axis. 
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 Equation (1.14) is only an estimate of the probability, and it’s a fairly coarse esti-
mate at that if the number of measurements  N  is small. Furthermore, with small  N  it is 
necessary to use fairly wide bins, so the  x  resolution of  jP x   is not very good. Con-
versely, if  N  is large, it is possible to obtain a fairly accurate and high-resolution 
estimate of  jP x  . 

 One thing we can do with a probability distribution is simply plot it. This allows us to 
visualize our data, and see which measured values are likely to occur, and which are not 
very likely. For example,  fi g.  1.1   tells us that measurements of  x  are clumped into regions, 
which is more information than simply saying that  15.1 7.3x   (from example 1.1). We 
can also use the probabilities to directly calculate moments, without having to go back to 
the original data. Given the probabilities  jP x   for  1,2,...,j M , the mean of  x  is given by

  
1

M

j j
j

x x P x  . (1.16)

Thus, to calculate the mean, weight the value by its probability, and then sum over all 
possible values. In general the mean of a function of  x ,  f x  , is given by

  
1

M

j j
j

f x f x P x .  (1.17) 

 EXAMPLE 1.3 
 Calculate the mean and standard deviation of the data from example 1.1, using the cor-
responding probability distribution. 

  Figure  1.1   shows the histogram of the data from example 1.1. We can use this histo-
gram to estimate the probability distribution using eq. (1.14). This probability distribu-
tion is plotted on the right axis of  fi g.  1.1  . Using these probabilities, eq. (1.16) tells us that

  6 0.1 9 0.4 21 0.3 24 0.2 15.3x  , (1.18)

and eq. (1.17) says that

  2 2 2 22 6 0.1 9 0.4 21 0.3 24 0.2 283.5x  . (1.19)

The standard deviation is then

  
1/ 22283.5 15.3 7.0x  . (1.20) 

 Note that the calculation of  x   using the estimated probability distribution in example 
1.3 is not in perfect agreement with the direct calculation in example 1.1, although the two 
determinations of  x   agree to well within one standard deviation. The agreement is not 
perfect because the probability distribution in example 1.3 is just an estimate of the true 
distribution. In the limit that the number of measurements is very large, and the resolution of 
 jP x   is very fi ne, the estimated distribution will approach the true distribution, and the 
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mean calculated using the probabilities will approach the mean determined directly from the 
data.    

   1.1.3    Continuous Probability Distributions   

 So far we’ve talked about probabilities that are determined at discrete values of  x , for 
 example,  jP x   for  1,2, ,j M . When talking about real data we always have a fi nite 
measurement resolution, so measured probability distributions will always be discrete. 
Theoretically, however, it is possible to discuss probability distributions of a continu-
ous variable. 

 Consider the position of a particle  x . Position is a continuous variable and, in princi-
ple, the particle can be anywhere. Since it can be  anywhere , the probability that it will 
be in any  particular  place is zero. For example, the probability of fi nding the particle at 
 exactly   9.999x   is zero—it doesn’t make sense to talk about it. What it does make 
sense to talk about is the probability of fi nding the particle within some range of posi-
tions, say between  9.99x   and  10.00x  . If the range is small, the probability of fi nd-
ing the particle will be proportional to the range (e.g., a particle is twice as likely to be 
found within a 2  μ m interval than within a 1  μ m interval). If we take  dx  to be a small–
length interval (in the sense of a differential), then the probability  P x   that the particle 
will be found between  x  and  x + dx  is

  P x p x dx  , (1.21)

where  p x   is called the probability density of  x .   2    Continuous distributions are nor-
malized by integrating the probability density over its entire range. If a particle can be 
found anywhere between  x   and  x  , the normalization condition is

  1p x dx  . (1.22) 

 For discrete probabilities we calculate the mean by weighting a value by its proba-
bility, and summing over all possible values. For continuous distributions we do the 
same thing, except that the sum is replaced by an integral. We thus have

  x xp x dx , (1.23)

and

  f x f x p x dx . (1.24)

If we wish to calculate the standard deviation of  x , we do it the same way as we did in 
the discrete case, using eq. (1.9).    

    2.     The probability on the left-hand side of eq. (1.21) is dimensionless, while the interval  dx  has units of 
length (m). For the units in eq. (1.21) to work out, then p (x) must have units of inverse length (m -1 ). A prob-
ability density always has the inverse units of its argument. 
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   1.1.4    Joint and Conditional Probabilities   

 Sometimes we’re interested in the probability of more than one thing. For example, we 
want to know the probability that a particle has a particular value of  x and  a particular 
value of  y  (i.e., it has both of these values simultaneously). We denote this probability 
by  ,P x y  , and refer to it as the joint probability of  x  and  y . 

 The joint probability density  ,p x y  , has the property that integrating with respect 
to one variable yields the probability density of the other. For example,

  ,p x p x y dy . (1.25)

Here we say that  p x   is the marginal probability density of  x . Averages are obtained 
by integrating with respect to both variables:

  , , ,f x y f x y p x y dxdy . (1.26) 

 In some situations we want to know the probability of obtaining  x , given a particular 
value of  y . We denote this probability by  |P x y  , and call it a conditional probability, 
because it represents the probability of  x  conditioned on  y . The joint and conditional 
probabilities are related by

  , |P x y P x y P y  . (1.27)

For more details see ref.   [1.1]  , sec. 3.7.     

   1.2    LINEAR ALGEBRA     

   1.2.1    Vectors and Basis Sets   

 We’ll use what you already know about vectors from fi rst-year physics to develop a 
vocabulary for linear algebra, and then we’ll build on that. 

 We can express a vector   a   (we’ll denote vectors with bold type), that “lives” in the 
 x-y  plane as

  x x y ya aa u u  , (1.28)

where  xu   and  yu   are dimensionless unit vectors that point in the positive  x - and  y - 
directions respectively.   3     Any  vector in the  x-y  plane can be expressed by giving its 
 components (coordinates) in the  xu   and  yu   directions; in eq. (1.28) the components are 
 xa   and  ya  . The vectors  xu   and  yu   are called basis vectors, and they make up a basis set. 
This basis set contains two vectors, because it is a 2-D vector space (an  N -dimensional 
vector space must have  N  basis vectors). 

    3.     We are not using the more familiar notion of   ̂  i  and  ̂  j , or   ̂x  and   y ̂  , to denote the unit vectors because 
we will reserve the caret symbol ^ for something else. 
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 Vectors are a shorthand notation. The symbol   a   is a convenient way to denote an 
object that has multiple components. To specify the 2-D vector   a   we need to specify 
two numbers, its components  xa   and  ya  . Equation (1.28) is one particular notation 
for doing this, but there are others. For example, we could specify   a   as a row vector

  ,x ya aa  , (1.29)

or a column vector

  
x

y

a
a

a  . (1.30)

As long as we know what the components of   a   are, we know what the vector   a   is. 
There are different notations for   a  , but they all represent the same vector.   4    

 In terms of column vectors, the basis vectors in the  x-y  plane can be written

   
1
0xu  ,  

0
1yu  . (1.31)

The column vector equivalent of eq. (1.28) is thus

   
01 0

0 1 0
xx

x y
y y

aa
a a

a a
a  . (1.32)

The row vector equivalent can be written out in a similar manner. 
 One nice thing about the notation of eq. (1.28) is that it explicitly contains the basis 

vectors  xu   and  yu  ; there is no ambiguity about what the basis vectors are. However, the 
row and column vectors of eqs. (1.29) and (1.30) do not explicitly reference the basis 
vectors. The reader needs to know what basis is being used, because if the basis changes 
the row and column vectors change. This is best illustrated with a specifi c example. 

 Let’s say that in the  x-y  coordinate system

  2
2 2

2x ya u u  . (1.33)

This vector is displayed graphically in  fi g.  1.2  (a). We can also express   a   in the  x ′ -y ′   
coordinate system, which is rotated from the  x-y  system by 45°, as shown in  fi g.  1.2  (b). 
In this coordinate system

   2 22 2
0xa u  . (1.34)

    4.     In eqs. (1.29) and (1.30) we didn’t use =, but rather the symbol . We’ll use  to denote “is represented 
by” as opposed to “is equal to”. The reasons for doing this will be detailed below. We’re borrowing this nota-
tion from ref.   [1.2]  . 



1:  MATHEMATICAL PRELIMINARIES  •   11 

As can be seen in  fi g.  1.2  ,   a   has not changed—it has the same length and points in the 
same direction. In eqs. (1.33) and (1.34) we have merely expressed   a   using two dif-
ferent basis sets. If we use the unit vector notation there is no ambiguity about what 
coordinate system we’re using. If we use the column vector notation, however, there is 

no indication of what basis we’re talking about. If we simply see   2
2

 , how do we know 

whether this is expressed in the  x-y  basis or the  x  ′  -y ′   basis? From now on, if there is 
potential for confusion, we will attempt to remove this ambiguity by placing a subscript 
on the vectors to indicate which basis they are being expressed in. For example, we will 

write these vectors as   
,

2
2 x y

  and   
', '

2 2
0 x y

   .  

 The difference between a vector, and its representation as a row or column vector, is 
why we’re using the symbol     to mean “is represented by”. The vector itself is always 
the same (i.e., it is independent of the representation), but it is represented differently 
depending upon which basis we use.    

   1.2.2    The Inner Product   

 We know that we can write the dot product of the vectors   a   and   b   as

   x x y y z za b a b a ba b  . (1.35)

The dot product is a way of “multiplying” two vectors. It’s also called the scalar prod-
uct because the result of this operation is a scalar, not a vector. An operation which 
combines two vectors to produce a scalar is generally referred to as an inner product. 
To compute the inner product we multiply the components of the two vectors, and then 
add up all the products. In terms of row and column vectors, the inner product of   a   and 
  b   would be written as

  

a
x’

y’

2
2

(b)

a

x

y

2

2

(a)

     

  Fig 1.2     The vector   a   represented in: (a) the  x-y  coordinate system, (b) the  x ’- y ’ coordinate 
system. 
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  , ,
x

x y z y x x y y z z

z

b
a a a b a b a b a b

b

a b  . (1.36) 

 Since we’ll be dealing with vector spaces that are more general than three- 
dimensional real space, it won’t always be convenient to use the subscripts  x ,  y , and  z  
to denote the coordinates. Instead, we’ll often use numbers to denote the coordinates. 
For example

  
1

2

3

a
a
a

a  . (1.37) 

 We’ve written the inner product of eq. (1.36) in terms of the product of a row vector 
and a column vector, with the row vector written on the left. This is the way we have to 
write inner products in terms of row and column vectors. We cannot directly take the 
inner product of two row or two column vectors. If we have two column vectors, for 
example, we must fi rst convert one to a row vector before taking the inner product. 
There are two steps to doing this: fi rst, we write the elements of the column vector as 
a row vector; then we take the complex conjugate of each of the elements. The row 
vector corresponding to the column vector in eq. (1.37) is

   1 2 3, ,a a aa  . (1.38)

We convert a row vector to a column vector in the same manner. You’re probably used 
to thinking about real vectors that live in real space, so you wouldn’t ordinarily think 
about taking the complex conjugate. However, in quantum mechanics the vectors we’ll 
deal with are in general complex, and we have to keep this in mind. 

 Why do we take the complex conjugate when switching to a row vector from a col-
umn vector, or vice versa? Imagine taking the inner product of a vector with itself. To 
do this we need two versions of the vector, one a row and the other a column. The inner 
product is then

   
1

22 2
1 2 3 2 1 1 2 2 3 3 1 2 3

3

, ,
a

a a a a a a a a a a a a a
a

 . (1.39)

The complex conjugate ensures that we get a real number when we take the inner prod-
uct of a vector with itself. The square root of the inner product of a vector with itself 
is called the norm of the vector. The norm is a measure of the “length” of the vector, 
which is why we desire that it always be a positive number. A vector is normalized if 
its norm (or consequently its norm squared) is equal to 1. 
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 Ordinarily we think of the components of a vector as being the elements of its col-
umn vector representation. With this in mind, the inner product of two vectors,   a   and   b  , 
in a general  N -dimensional space can be written as

   
1

1
1

, ,
N

N i i
i

N

b
a a a b

b
 . (1.40)

If we already know the row vector representation, we don’t need to take the complex 
conjugate  again  to compute the inner product. We only need to do this when switching 
from a column vector to a row vector. 

 In ordinary three-dimensional (3-D) space we think of vectors as being orthogonal if 
they make a 90° angle with respect to each other. Equivalently, we say that two vectors are 
orthogonal if their dot product is 0. In the more general vector spaces we will be talking 
about in quantum mechanics, two vectors are orthogonal if their inner product is equal to 0. 

 Again, thinking about 3-D space, we almost always work in coordinate systems 
where our basis vectors are mutually orthogonal, and we also fi nd it convenient to use 
normalized basis vectors. If we have a basis set in which all of the vectors are mutually 
orthogonal, and normalized, we have an orthonormal basis set. For example, the unit 
vectors  xu  ,  yu  , and  zu   in 3-D are an orthonormal basis set.    

   1.2.3    Matrices   

 In our discussion of matrices we’ll focus on square matrices (i.e., matrices which have 
the same number of rows and columns), because 99% of the time in quantum mechan-
ics that’s what we deal with. I’ll assume that you know how to take the determinant of 
such a matrix. I’ll also assume that you know how to multiply a matrix and a vector, or 
two matrices. However, to be clear on notation we’ll present some expressions, which 
you might not be familiar with, that describe these processes. 

 We’ll use  Mij  to denote the element in the  i   th  row and  j   th  column of the matrix M (we’ll 
use bold with an overbar to denote a matrix). Recall that the product of a matrix and column 
vector yields another column vector. In  N -dimensions, the components of  b , which comes 
from the operation  b aM  , can be written as the inner product of the rows of  M  with  a :

  
1

M
N

i ij j
j

b a  . (1.41)

Since knowing the components determines the vector, eq. (1.41) expresses the multi-
plication of a matrix and a column vector. Similarly, we can express the elements of the 
matrix product  M AB  in terms of the inner product of the  i   th  row of the fi rst matrix 
with the  j   th  column of the second:

   
1

M A B
N

ij ik kj
k

 . (1.42) 
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 You’re probably already aware, and in the problems you’ll confi rm, that in general 
 AB BA . The order in which we multiply matrices  matters —matrix multiplication is 
not commutative. More typically, we’ll say that matrices don’t always commute. This 
has important implications in quantum mechanics, as we’ll discuss later.    

   1.2.4    Eigenvalues and Eigenvectors   

 The following is a mathematical problem that arises frequently, often as the result of 
a physical problem: We are given a matrix  M , and we want to fi nd the vectors   x   and 
constants  λ  that are solutions of the equation

  x xM  . (1.43)

In other words, there are some special vectors such that when we multiply them by the 
matrix  M , give us back a scaled version of themselves. The vectors that are solutions to 
eq. (1.43) are called the eigenvectors of  M , and the corresponding constants are called 
the eigenvalues of M.   5    

 How do we solve this problem? Start by rewriting eq. (1.43) as

  0x x =M  . (1.44)

In order to factor out the vector   x  , we need to introduce the identity matrix  1  , which 
has 1s on the diagonal, and 0s everywhere else. In 3-D, for example, the identity is 
given by

   
1 0 0
0 1 0
0 0 1

1   . (1.45)

Another way to express the identity matrix is to say that its elements are equal to the 
Kronecker delta  ij , which is defi ned as

   
1
0ij

i j
i j

 . (1.46)

The identity matrix is useful because multiplying it times any vector (or matrix) simply 
returns the same vector (or matrix). For example, in 2-D

   1 1

2 2

1 0
0 1

x x
x x

x x1   . (1.47)

Using this fact, we can insert the identity into eq. (1.44) and obtain

    5.     More generally this problem is expressed in terms of linear operators, as opposed to matrices, as we’ll 
discuss in later chapters.  
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   0x x = x x = x =M M 1 M 1 . (1.48)  

 Instead of continuing on generally, we’ll specialize to 2-D, so we can explicitly 
write eq. (1.48) as

   11 12 1

21 22 2

0
0

M M x
M M x  . (1.49)

This is equivalent to a system of 2 equations

   11 1 12 2

21 1 22 2

0 ,

0 ,

M x M x

M x M x
  (1.50)

in 3 unknowns:   ,  1x   and  2x  . There is a solution to this problem if and only if the deter-
minant of the matrix in eq. (1.49) is 0:

   11 12
11 22 12 21

21 22
0

M M
M M M M

M M
 .  (1.51) 

 We’ll just outline the rest of the procedure before doing a specifi c example. Begin 
by noticing that eq. (1.51) is 2 nd -order in   . This means that there are 2 solutions, which 
we’ll call  a   and  b . Once these eigenvalues have been found, each will have its own 
corresponding eigenvector,  ax   or  bx  . To fi nd the eigenvectors, substitute an eigenvalue 
into the original equation, then solve for the corresponding eigenvector. For example:

   
111 12

21 22 2
0

aa

a a

xM M
M M x

  . (1.52)

This is equivalent to two linear equations in two unknowns,  1ax   and  2ax  , so we can 
solve for them

   11 1 12 2

21 1 22 2

0 ,

0 .
a a a

a a a

M x M x

M x M x
  (1.53)

In a general  N -dimensional problem there will be  N  eigenvalues and  N  eigenvectors. 
 There’s one last trick. The equations that determine the eigenvectors [e.g., eq. (1.53)] 

are  not  independent (the solutions for the eigenvalues ensure that this is the case). This 
means that there is no unique solution to the problem; we can solve for  2ax   in terms of 
 1ax  , or vice versa, but neither is uniquely determined. That this must be so is seen in the 
fact that if  ax   is a solution to our original problem, eq. (1.43), then any constant times 
 ax   is also a solution—there are an infi nite number of  ax  ’s corresponding to  a  . We are 
thus free to impose one more constraint in order to obtain a unique solution. Typically 
we choose to normalize the eigenvectors. This means
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2 21

1 2 1 2
2

, 1
a

a a a a
a

x
x x x x

x
  . (1.54)

It’s probably easiest to learn how to fi nd eigenvalues and eigenvectors using an 
example. 

 EXAMPLE 1.4 
 Find the eigenvalues and eigenvectors of

   
0 1
2 3

M   . (1.55) 

 First we fi nd the eigenvalues by subtracting    from each of the diagonal terms, and 
setting the determinant equal to 0 [eq. (1.51)]:

   
0 1

0
2 3

,  (1.56)

which yields

   23 2 3 2 0 . (1.57)

Solving this quadratic equation yields two eigenvalues:

   
23 3 4 1 2

,
2 1

  (1.58)

   2 , 1 . (1.59) 

 To fi nd the eigenvector corresponding to  2 , we know that [eq. (1.52)]

   1

2

0 2 1
0

2 3 2
x
x

 . (1.60)

This yields 2 equations in 2 unknowns:

   1 2

1 2

2 0 ,
2 0 .

x x
x x

  (1.61)

Notice that these are the same equation, so we solve it to obtain 2 12x x . An eigen-
vector corresponding to  2  is thus:
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   1
1

1

1
2 2
x

x
x

x  . (1.62)

We can normalize this using

   2 2 2
1 1 2 1x   ,  1

1
5

x   . (1.63)

So, one eigenvalue-eigenvector pair is

   2  ,  
11
25

x   . (1.64)

The eigenvector corresponding to 1   is found in a similar fashion; it is

   11
12

x    . (1.65)       

   1.3  References  
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  [1.2]  J.J. Sakurai and J. Napolitano,  Modern Quantum Mechanics, 2nd ed.  (Addison-Wesley, 
Boston, MA, 2011). 

         1.4  PROBLEMS    

 Note: In several of these problems you will be asked to calculate the variance, or the 
standard deviation. If you use your calculator or a spreadsheet, make sure you know 
whether it uses  1/ N   or  1/ 1N  . If it uses  1/ 1N  , convert to  1/ N  . 

 Data A ( x i  ): 10, 13, 14, 14, 6, 8, 7, 9, 12, 14, 13, 11, 10, 7, 7 
 Data B ( x i  , y i  ): (3,4), (5,8), (4,4), (8,5), (3,5), (4,5), (5,8), (8,5), (8,4), (3,4), (3,8), (4,8)    

       1.1     Calculate the mean and variance of Data A directly from the data.  

      1.2     Create a histogram of Data A, and from it estimate the probability distribution. 
Use min and max values for the data range of 5 and 14, and use 5 bins (5 and 6 
go in the fi rst bin; label it  x i  =5.5, etc.).  

      1.3     Use the probability distribution from problem 1.2 to calculate the mean of 
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Data A.  
      1.4     Calculate the variance from the probability distribution of problem 1.2 using two 

different expressions:

  (a)   
22x x x  , and

  (b)   22 2x x x  .

  Do all the values for the variance (these two, and that from problem 1.1) 
agree? Why or why not?  

      1.5     For Data B, determine  P x   and  P y   for each of the measured values of  x  and  y .  

      1.6*    For Data B, determine  5, 8P x y   and  5 | 8P x y  . Verify that 
 , |P x y P x y P y   for  5x   and  8y  .  

      1.7     Find the constant  c  that normalizes the probability density   2
1

5 3 4
p x c

x
  

over the range  10 10x  . Compute   x   and  x  for this distribution.  

      1.8     Find the constant  c  that normalizes the probability density

  0
0 0

xce xp x
x

 ,  

 where    is a positive, real constant. Compute   x   and�� x ��for this distribution.  
      1.9     Compute   x   and  x   for the (already normalized) probability density 

  2 21 xp x e  , where    and    are positive, real constants.  

      1.10     Compute 

   

5 0 4 1
3 1 0 6
0 0 2 3

  

 Verify that eq. (1.41) properly computes this product.  
      1.11     Compute 

   

5 0 4 0 2 7
3 1 0 8 0 1
0 0 2 3 0 0

  

 Verify that eq. (1.42) properly computes this product.  
      1.12*    Compute 

   

5 0 2 1
3 7 0 0   

   

2 1 5 0
0 0 3 7   

 Are they the same?  
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      1.13     Find the determinant 

   
4 2
1 8    

      1.14     Find the determinant 

   

5 0 4
3 1 0
2 0 2

   

      1.15     For the matrix 

   1 1
1 1

  , 

 (a) Find the eigenvalues and normalized eigenvectors.
(b) Prove that the eigenvectors are orthogonal.  

      1.16*    For the matrix 

   0
0
i

i
 , 

 (a) Find the eigenvalues and normalized eigenvectors.
(b) Prove that the eigenvectors are orthogonal.                  
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         CHAPTER 2 

Classical Description 
of Polarization  

   1.     The angular frequency is often referred to simply as the frequency. You should be able to tell which 
frequency is meant from the context. 

    This chapter describes the classical theory of the polarization of an electromagnetic 
wave. Here we’ll learn how to represent polarization as a 2-dimensional (2-D) vector, 
and how optical elements which affect the polarization are represented as matrices. 
By combining these concepts, we’ll be able to calculate how a combination of optical 
 elements will transform the polarization of a wave. 

 We’re exploring classical polarization now, because in  chapter  3   we’ll be talking 
about the quantum mechanics of polarization. It’s easier to understand the quantum 
mechanics if you already know the corresponding classical physics.    

   2.1    POLARIZATION     

   2.1.1    The Polarization Vector   

 An electromagnetic wave, such as a light wave, consists of propagating electric and 
magnetic fi elds. The polarization of the wave is determined by the direction of the 
electric fi eld vector. The electromagnetic fi eld is a transverse wave, so the electric fi eld 
  E   is perpendicular to the direction of propagation. Assume that a wave is propagating 
in vacuum in the  z -direction, so that its wave vector is given by   k   =  k   u    z  . The magnitude 
of the wave vector is related to the wavelength   , frequency   f , and angular frequency 
   of the wave by 

    2 2 fk
c c

  , (2.1) 

 where  c  is the speed of light in vacuum.   1    The electric fi eld can be written as 
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    x x y yu uE E E  , (2.2) 

 where 

    0 cosx x kz tE E   and   0 cosy y kz tE E  . (2.3)

Here 0xE  and 0 yE  are the amplitudes of the fi elds in the  x - and  y -directions.   2    The phase 
shift  represents the fact that these two fi eld components do not necessarily oscillate 
with the same phase. The polarization of the wave is determined by the relative magni-
tudes of  0xE   and  0 yE  , and by the phase shift. 

 In eq. (2.3) we have written the fi eld in terms of cosine functions because it is a real, 
physical quantity. However, it is more convenient to write the fi eld in terms of complex 
exponentials, with the understanding that we can always take the real part whenever we 
are interested in fi nding the true fi eld. With this convention the components of the fi eld 
become 

    0
i kz t

x xeE E   and 0
i kz t

y yeE E , (2.4)

and the total fi eld is 

    0 0
i kz t i kz t

x x y ye eu uE EE  . (2.5)

The amplitude   0E   of the fi eld   E   is 

    
1/ 22 2

0 0 0x yE E E  . (2.6)

In terms of this amplitude, the fi eld is 

    0( ) 0
0

0 0

yi kz t ix
x ye eu u

EE
E

E E
E  . (2.7) 

 We defi ne the polarization vector ε to be equal to the quantity in brackets in eq. (2.7):   

 00

0 0

y ix
x ye= u u

EE
E E

. (2.8)

In general this is a complex vector; it is also a unit vector:

   

1/ 222
1/ 2 00

0 0
1yx= =

EE
E E

. (2.9)

 The electric fi eld can be written in terms of the polarization vector as 

    0
i kz te=EE  . (2.10)

    2.     In  Chapter  1   we defi ned     u   x   and     u   y   to be unit vectors that point along the  x - and  y -directions. 
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In eq. (2.10) there is no  x - or  y -dependence—the fi eld is constant over any plane perpen-
dicular to the propagation direction (the  z -axis). A fi eld of this form is called a plane wave. 

 An optical detector does not respond directly to the electric fi eld, but instead to the 
power incident on it. This is because electric fi elds oscillate very rapidly in the optical 
region of the spectrum. Detectors cannot follow these oscillations, and instead average 
over many oscillation periods. The power is proportional to the intensity  I , which we’ll 
defi ne to be equal to the square magnitude of the fi eld:

   2I E E E .  (2.11)

The intensity doesn’t fl uctuate at optical frequencies.   3    This fact can be seen in 

    2
0 0 0= i kz t i kz tI e eE E E E E  , (2.12)

which has no oscillatory time dependence. The intensity follows slow (compared to the 
detector response time) fl uctuations in the fi eld amplitude 0E , but not oscillations at 
optical frequencies. Detectors effectively respond to the intensity defi ned in eq. (2.11).    

   2.1.2    Linear Polarization   

 Consider the special case of a zero phase shift ( 0) between the  x - and  y -components 
of the fi eld. In this case the polarization vector is real, and is equal to 

    00

0 0

yx
x y= u u

EE
E E

 . (2.13)

This vector describes a line which makes an angle of   θ , 

    01

0
tan y

x

E
E

  , (2.14)

with respect to the  x -axis. Because the polarization vector points along a line, the fi eld 
is said to be linearly polarized. 

  Figure  2.1   shows a snapshot of a linearly polarized (along yu ) wave propagating in the 
 z -direction. As time advances the whole wave slides along the  z -axis, so that in any given 
plane perpendicular to the  z -axis the electric fi eld oscillates back and forth. To observe 
simulations of fi elds with different polarizations propagating in time, see ref.   [2.1]  .       

   2.1.3    Circular Polarization   

 Now consider the special case of  = π/2, and 0 0 0 2x yE E E . The polarization 
vector is then 

    3.     In this text we are defi ning the intensity by eq. (2.11). Other texts defi ne the intensity  I   ' to be equal to 
the average power per unit area of an electromagnetic wave. These two defi nitions are proportional to each 
other,  I   ' = (1/2) cε 0   I , where ε 0  is the permittivity of free space, so they behave in the same manner. 
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0 cos
2x kz t

E
E , (2.16)

0 0cos sin
22 2y kz t kz t

E E
E . (2.17)

  These fi elds are equal-amplitude, sinusoidally oscillating waves that are phase shifted 
with respect to each other. To examine how the fi elds oscillates in time, in a plane 
perpendicular to the propagation direction, we set z = 0, and obtain 

. (2.15)
1
2 x yi= u u

  

x

y

z

    
  Fig 2.1     A linearly polarized wave propagating in the  z -direction.   

  How can we make sense of this complex vector? Remember that to fi nd the real fi eld, 
we need to take the real part. However, the polarization vector is constant in both time 
and space, so taking its real part just leaves a constant factor, which yields no informa-
tion about the oscillations of the fi eld. We need to go back to the real, physical, tem-
porally and spatially varying fi elds described in eq. (2.3). With the assumptions we’re 
making here, these fi elds become 
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0 0cos cos
2 2x t t

E E
E , (2.18)

0 0sin sin
2 2y t t

E E
E . (2.19)

  Figure  2.2   shows the total electric fi eld vector, obtained from eqs. (2.18) and (2.19), 
at different times. The time in  fi g.  2.2   is expressed as fractions of the oscillation period 
  2 /T  . The electric fi eld sweeps out a circle as it rotates counterclockwise, so the 
fi eld is circularly polarized. The fi eld makes one full rotation during each oscillation 
period  T .    

 Circular polarization comes in two fl avors: left-circular and right-circular.  Figure 
 2.2   represents left-circularly polarized light: point your left thumb toward the source 
(into the page), and your fi ngers will curl in the direction of rotation. This convention 
is exactly  opposite  to what you might expect: your thumb must point toward the source, 
which is opposite the direction of propagation.  Figure  2.3   shows a 3-D representation 
of a propagating left-circularly polarized wave.       

   2.1.4    Elliptical and Random Polarization   

 Linear and circular polarizations are special cases. If the wave has a well-defi ned po-
larization, but neither of these special cases is satisfi ed, the wave is elliptically polar-
ized. The orientation and eccentricity of the ellipse are determined by the ratio of the 
amplitudes of the  x - and  y -components, and the phase shift. 

 If the polarization fl uctuates randomly in time, the polarization is said to be random, 
or the fi eld is said to be unpolarized. Because this is a random process, we can’t specify 

  

x

y

t=T/8

t=T/2

t=3T/8
t=T/4

t=0

t=7T/8
t=3T/4

t=5T/8

    
  Fig 2.2     The direction of the electric fi eld vector at different times for a left-circuarly polarized 
wave that is propagating out of the page.   
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2n nk
v c

. (2.20)

 The phase shift between two points on a wave, separated by a distance  z , is 

exactly the parameters of the wave; however, we can describe the statistics of the fl uctua-
tions. One common way to do this is to use the Stokes parameters (ref.   [2.2]  , sec. 8.13).     

   2.2    BIREFRINGENCE     

   2.2.1    Birefringent Materials   

 There are certain materials, called birefringent materials, which are extremely useful in 
modifying the polarization of a wave. Before getting into details, we’ll start with a brief 
review of wave propagation in media. 

 A medium such as glass or water has an index of refraction  n  associated with it. The 
index of refraction is determined by the speed of light in the medium  v , and is given by 
  /n c v . Inside a medium of index of refraction  n , eq. (2.1) becomes: 

  

z

x

y

    

  Fig 2.3     A left-circularly polarized wave propagating in the  z -direction.   
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2n zkz . (2.21)

 The phase shift depends on the index of refraction. For a “normal” material such as 
glass, the index of refraction depends on the frequency (wavelength) of the wave (a 
property known as dispersion), but not on the polarization or direction of propagation; 
such a material is said to be isotropic. 

 Birefringent materials are anisotropic—the index of refraction depends on the polar-
ization. Such materials are crystalline in structure, having one or more preferred direc-
tions in space. In uniaxial crystals light polarized along a particular axis (called the 
optic axis) has one index of refraction, while light polarized perpendicular to the optic 
axis has a different index. In biaxial crystals there are three indices of refraction, associ-
ated with polarization in three different directions. 

 What causes this difference in the indices of refraction for different polarizations? 
Remember that crystalline structures have a very specifi c and ordered arrangement of 
atoms in the material. Imagine, for example, that the atoms are arranged in sheets, and 
the sheets are stacked on top of each other. It’s not diffi cult to imagine that fi elds polar-
ized parallel or perpendicular to the sheets will behave differently in such a crystal. For 
more details, see ref.   [2.2]  , sec. 8.4. 

 We can always decompose the polarization of a wave into two orthogonal compo-
nents. Because birefringent materials have preferred directions in space, it is natural to 
choose components associated with these directions. The direction associated with the 
lower index of refraction is referred to as the fast axis, because light polarized along 
that axis propagates at a faster speed. Conversely, the orthogonal direction is referred 
to as the slow axis; light polarized in this direction propagates at a slower speed.    

   2.2.2    Poynting Vector Walk-Off   

 At some point in your life you’ve probably come across a piece of calcite crystal and seen 
that when you place it on top of something, it creates two separated images ( fi g.  2.4  ). 
This is the phenomenon of “double refraction,” which occurs in birefringent materials.    

 You might think that it’s the two indices of refraction that lead to these two images. The 
explanation would then be that the two different indices cause rays to refract at two different 
angles because of Snell’s law. This does happen, but it’s not the whole story. Snell’s law states 

sin sini i r rn n , (2.22)

 where  i  refers to the incident beam and  r  refers to the refracted beam. The angles refer 
to the direction of the wave vector  k  with respect to the surface normal. If the incident 
beam is normal to the surface   0i  , then   0r  , independent of the indices of refrac-
tion, and the beam passes into the medium without bending. Yet, in a birefringent mate-
rial the light  can  bend, even when Snell’s law seems to indicate that it shouldn’t. If  k  
doesn’t bend, what  does ? 

 The energy fl ow bends. Energy fl ows along the direction of the Poynting vector  S  , 
which is given in terms of the electric and magnetic fi elds as 
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1S E B , (2.23)

      
  Fig 2.4     Double refraction creating 2 images in calcite.   

      
  Fig 2.5     A beam of light containing both vertical and horizontal  polarizations is split into two 
beams by Poynting vector walk-off. Here ʘ denotes vertical polarization, and ↕ denotes hori-
zontal  polarization.   

 where  μ  is the permeability of the medium. In an isotropic medium,   k S   and   k E  . 
In an anisotropic medium, light of one polarization (called the ordinary wave) satisfi es 
  k S   and   k E  , but for light of the orthogonal polarization (called the extraordinary 
wave) these relations do not necessarily hold. 

 For an ordinary wave incident normally on a boundary, both  k  and   S   are transmitted 
straight through without bending. For an extraordinary wave,  k  doesn’t bend, but   S   
(and hence the beam itself) does. This phenomena is called Poynting vector walk-off. 
A general wave containing both polarization components will split into two pieces 
traveling in different directions, as shown in  fi g.  2.5  . If the crystal faces are parallel, 
then the two outgoing beams emerge from the crystal displaced from each other, but 
parallel.    

 In this textbook we will often refer to a beam displacing polarizer (BDP, also 
called a beam displacing prism), such as in  fi g.  2.5  , as a polarization analyzer, PA. In 
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the case of  fi g.  2.5  , the beam is split into vertical and horizontal components, so we 
will refer to it is as a PA HV . If we were to rotate this device by 45° the beam would be 
analyzed into +45° and –45° linear polarization components, and we would refer to it 
as a PA 45 .     

   2.3    MODIFYING THE POLARIZATION   

 Frequently we need to modify the polarization of a wave, and there are a number of 
optical elements which are useful for this purpose.   

   2.3.1    Linear Polarizers   

 A linear polarizer has a preferred direction, known as the polarization axis or transmis-
sion axis. This axis is typically oriented along a line perpendicular to the wave propaga-
tion direction. A linear polarizer projects the incident electric fi eld onto its transmission 
axis, transmitting only the component of the fi eld along this axis. 

 We can explicitly write down the electric fi eld transmitted by a linear polarizer. Consider 
an electromagnetic wave incident on such a polarizer, with an electric fi eld of the form 

0
i kz tei =E E , (2.24)

 where     represents any arbitrary polarization. The transmission axis points along the 
direction of the unit vector   u  , where  θ  is the angle between the transmission axis 
and the horizontal axis. (It’s common to refer to the  x -direction as horizontal, and the 
 y -direction as vertical.) The transmitted fi eld is 

0
i kz tet i u u = u uE E E , (2.25)

 The output fi eld is linearly polarized along   u  , and the amplitude is reduced by a factor 
of   u  , as shown in in  fi g.  2.6  .    

 For linearly polarized light that makes an angle  ψ  with the horizontal axis (  = u  ), 
the amplitude of the fi eld is reduced by a factor of   cos  . The intensity is propor-
tional to the square of the fi eld, so the intensity of the light decreases by a factor of 
  2cos  . This is known as Malus’s law. For a circularly polarized beam incident on 
a linear polarizer, the fi eld amplitude is reduced by factor of   1 2 , and the intensity is 
reduced by factor of 1/2, independent of the direction the polarizer axis.    

   2.3.2    Polarizing Beam Splitters   

 A device that splits a beam into orthogonal polarization components (usually horizontal 
and vertical linear polarizations) is called a polarizing beam splitter (PBS). A piece of 
birefringent material such as that shown in  fi g.  2.5   can be used as a PBS. Polarizing 
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beam splitters can also be made using thin-fi lm coatings; these are useful because the 
two beams emerge at right angles to each other.    

   2.3.3    Wave Plates   

 When propagating through a birefringent material of length  l , the component of the 
polarization along the fast axis accumulates a phase of 

  

TATA

zz

x

y

    
  Fig 2.6     A linearly polarized wave propagating through a linear polarizer. The transmission 
axis of the polarizer is denoted by TA.   

 where   fn   is index of refraction along the fast axis. The component of the polarization 
along the orthogonal axis accumulates a phase of 

2f
f

n l
, (2.26)

2s
s

n l
, (2.27)

 where   sn   is index of refraction along the slow axis. The wave thus acquires a relative 
phase shift between these two components of 
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2s f
s f

n n l
. (2.28)

 As described in sec. 2.1, the relative phase shift between two orthogonal polarization 
components is an important parameter in determining the polarization of a wave. 

 A wave plate is an optical element that uses a phase shift between orthogonal fi eld 
components to transform the polarization of a wave. One important type of wave plate is 
called a quarter-wave plate. In a quarter-wave plate the phase shift between the fast and 
slow axes is   2 / 4 / 2 , which corresponds to a quarter of a wavelength shift.   4    The 
other most common wave plate is a half-wave plate, in which the relative phase shift cor-
responds to half of a wavelength. Since the phase shift and the indices of refraction depend 
on wavelength, wave plates are designed to work properly at specifi c wavelengths. 

 Consider a vertically polarized beam incident on a quarter-wave plate. If the fast axis 
of the wave plate is parallel to the input polarization, there is only one relevant index of 
refraction,   fn  , and the wave acquires a phase shift, but no alteration of its polarization. 
However, if the fast axis of the quarter-wave plate makes an angle of 45° from the hori-
zontal, half the light is polarized along the fast axis and the other half is polarized along 
the slow axis. These two polarizations acquire a   /2 relative phase shift. In Sec. 2.1.3 we 
learned that a wave whose two components have equal amplitudes and a relative phase 
shift of   /2 is circularly polarized. Thus, a quarter-wave plate can transform a linearly 
polarized beam into a circularly polarized beam, as shown in  fi g.  2.7  . It can also change 
a circularly polarized beam into a linearly polarized beam. The primary utility of a half-
wave plate is that it can rotate linear polarization through an arbitrary angle; the rotation 
angle is determined by the orientation of the wave plate (proof of this comes below).        

   2.4    JONES VECTORS AND JONES MATRICES     

   2.4.1    Jones Vectors   

 It is conventional to take the horizontal and vertical linear polarization vectors to be   H xu   
and   V yu  . These vectors then serve as basis vectors, which we can use to describe other 
polarization vectors. For example, referring to eqs. (2.13) and (2.14), the polarization vec-
tor for a fi eld making an angle of 45 °  with respect to the horizontal axis can be written as 

    4.     For a quarter-wave plate, the phase shift is in general   Δφ π π= +2 2j /  , where  j  is an integer. A wave 
plate in which j = 0    is referred to as a 0-order wave plate. 

45
1 1
2 2

1 .
2

x y

H V

= u u
(2.29)

 If the polarization of an arbitrarily polarized wave is written in the horizontal/vertical 
basis as a column vector, it is referred to as a Jones vector.  Table  2.1   contains a list of 
common Jones vectors.        
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  Fig 2.7     A linearly polarized wave is transformed to a circularly polarized wave by a quar-
ter-wave plate. The fast axis of the wave plate is denoted by FA.   

   2.4.2    Jones Matrices   

 Certain types of optical elements, such as linear polarizers or wave plates, can modify 
the polarization of a wave. The mathematical objects that change one vector into another 
are matrices, so these polarization-changing elements are represented by matrices, called 
Jones matrices. I’ll denote Jones matrices with the symbol   J  ;  table  2.2   lists some com-
mon Jones matrices. Examples 2.1 and 2.2 illustrate how Jones vectors and matrices can 
be used to describe the polarization behavior of beams interacting with optical elements.     

 EXAMPLE 2.1 
 What does a half-wave plate, whose fast axis makes an angle of  θ  with respect to hori-
zontal, do to a beam incident with horizontal polarization? 

 From the tables, the Jones vector for the incident beam is 

 and the Jones matrix for the wave plate is 

1
0H , (2.30)
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    5.     Note that we used =, not =. , in these expressions. That’s because Jones vectors and matrices are always 
represented in the same basis, so the vector and the representation truly are equal. 

     Table 2.1     Common Jones vectors.         

   Polarization  Polarization Vector  Jones Vector     

 Horizontal       H  
   1

0

    

 Vertical       V   
   

0
1     

 +45 °  linear    
   45

1
2 H V      

11
12     

 –45° linear    
   45

1
2 H V      

11
12     

 Linear at angle  θ  w.r.t. 
horizontal    cos sinH V   

   

cos
sin     

 Left circular    
   

1
2L H Vi

     

11
2 i     

 Right circular    
   

1
2R H Vi

     

11
2 i     

 The output polarization is 

/ 2
cos 2 sin 2
sin 2 cos 2

J . (2.31)

/ 2

cos2 sin 2 1
sin 2 cos2 0

cos2
.

sin 2

HJ

(2.32)

 Physically what does this polarization represent? From  table  2.1  , we see that this rep-
resents a linearly polarized beam whose polarization makes an angle of 2 θ  with respect 
to the horizontal.   5     
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 This example shows that if a linearly polarized beam strikes a half-wave plate whose 
fast axis makes an angle of    with the polarization, the output beam will have its polar-
ization rotated by 2  . Thus, by rotating a half-wave plate, we can rotate the polarization 
of a linearly polarized beam into any other linear polarization. 

 EXAMPLE 2.2 
 What does a linear polarizer, whose transmission axis makes an angle of +45 °  with re-
spect to horizontal, do to the polarization of a beam incident with vertical polarization?

The output polarization is given by 

     Table 2.2     Common Jones matrices, apart from overall, constant phase factors.         

   Optical Element  Symbol  Jones Matrix     

 Horizontal polarizer    HJ   
   

1 0
0 0     

 Vertical polarizer    VJ   
   

0 0
0 1     

 Linear polarizer,   transmission 
axis    w.r.t. horizontal    J   

   

2

2

cos cos sin
cos sin sin     

 Quarter-wave plate, fast axis 
at  + 45 o     / 4 45J   

   

11
12
i

i     

 Quarter-wave plate, fast axis    
w.r.t. horizontal    / 4J   

   

2 2

2 2

cos sin 1 sin cos
1 sin cos sin cos

i i
i i     

 Half-wave plate, fast axis    
w.r.t. horizontal    / 2J   

   

cos2 sin 2
sin 2 cos2     

45

45

1 1 01
1 1 12

11
12

11 1
12 2

1 .
2

VJ

(2.33)
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 The output is polarized along +45 ° , as expected, but what’s the extra factor of   1/ 2  ? Recall 
that the amplitude of the electric fi eld is reduced after passing through a linear polarizer. In 
this example, the amplitude of the polarization vector is reduced by   1/ 2  , meaning that 
the electric fi eld is reduced by the same amount. Its intensity is reduced by   

2
1/ 2 1/ 2 .  

 It is standard practice to normalize the polarization vector at the input of an optical 
system to have a magnitude of 1. On output the polarization vector will in general be a 
unit polarization vector, multiplied by a complex constant. The amplitude of this con-
stant determines the change in amplitude of the electric fi eld, and the phase determines 
the phase shift of the fi eld.    

   2.4.3    Ordering   

 Suppose that a wave with input polarization   i  passes through a series of elements 
that modify its polarization. In order it experiences elements whose Jones matri-
ces are   1 2, , , nJ J J  . After the fi rst element its polarization has been changed to   1 , 
where 

 This polarization serves as the input to the second element, and after it the polarization 
becomes 

1 1 iJ . (2.34)

2 2 1 2 1 2 1i iJ J J J J . (2.35)

 Generalizing, the polarization   n  after all  n  elements is 

2 1n n iJ J J . (2.36)

 Note the ordering of the matrices. The fi rst element encountered is written to the right, 
closest to the input polarization vector; the second element encountered is written to the 
left of the fi rst, and so on. While at fi rst glance the matrices in eq. (2.36) may appear to 
be written in reverse order, they are actually ordered properly. The Jones matrices cor-
responding to the different optical elements are ordered from right to left. 

 We learned in Sec. 1.2 that the  order  in which we multiply matrices matters. For 
example, in a system where the beam fi rst travels through a half-wave plate oriented at 
an angle   =45 o , and then goes through a horizontal polarizer, the combination yields 

 If the order is reversed we get instead 

/ 2 45
1 0 0 1 0 1
0 0 1 0 0 0HJ J . (2.37)
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 which is clearly different. Not only is the math different, but the physics is as well. The 
output polarization depends on the order in which a beam passes through polarization-
changing elements. 

 The properly ordered Jones matrices for a series of polarization-changing elements 
can be multiplied together to produce an effective Jones matrix for the entire system. 
The output polarization is determined by multiplying the input polarization vector by 
this effective Jones matrix.     

   2.5    POLARIZATION INTERFEROMETER   

 Consider the arrangement of two PA HV ’s shown in  fi g.  2.8  . The fi rst PA HV  splits the 
incident beam (assumed to be polarized at +45°) into separate horizontal and vertical 
components, while the second PA HV  recombines them. For the top beam, the fi rst PA HV  
acts like a vertical polarizer, so its Jones matrix is   VJ  . That same PA HV  acts as a hori-
zontal polarizer,   HJ  , to the bottom beam. The second PA HV  recombines the beams, so 
it effectively adds the Jones matrices for the two paths 

 induces a phase shift     on the horizontal polarization, relative to the vertical polariza-
tion. The effective Jones matrix corresponding to Fig 2.8 is thus 

/ 2 45
0 1 1 0 0 0
1 0 0 0 1 0HJ J , (2.38)

  PAHV PAHV     
  Fig 2.8     A +45 °  polarized beam of light is split into two beams and then recombined by a pair 
of PA HV ’s.   

0 0 1 0 1 0
0 1 0 0 0 1V HJ J J 1 . (2.39)

 This is the identity matrix, which implies that this combination of PA HV ’s has no effect 
on the beam.    

 However, a closer look reveals that the two polarization components in  fi g.  2.8   have 
different path lengths through the system. This means that there is a phase shift between 
the horizontal and vertical polarizations. In the problems you will verify that the matrix 

0
0 1

ieJ (2.40)
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l/2

q=45o

f

PAHV PAHV

    

  Fig 2.9     A half-wave plate inserted in a polarization interferometer to equalize the path 
lengths of the two arms. The relative phase  between the two arms can be adjusted by 
 tilting one of the PA HV ’s.   

0 0 1 00 0
0 1 0 00 1 0 1

i i

V H
e eJ J J J . (2.41)

  Figure  2.8   represents a type of polarization interferometer; the two polarizations are 
separated, phase shifted, and recombined. The fact that there is a relative phase shift 
between the two polarizations means that the output polarization is in general different 
from the input polarization. 

 Unfortunately, the polarization interferometer of  fi g.  2.8   has a fl aw. It will work 
well enough with a continuous wave (CW) laser source like a helium-neon laser, but 
it won’t work with all sources. Imagine that we put a very short pulse of light into this 
interferometer—the pulse gets split into two pulses that travel through the interfer-
ometer. If the path length difference between the arms is longer than the length of the 
pulse, then the two pulses won’t get to the second PA HV  at the same time; they won’t 
overlap, so they won’t interfere. Even if we don’t use pulses, we have to worry about 
the coherence length of the light source. In order for two light waves to interfere, they 
must be coherent with respect to each other (See complement 2.A). If the path length 
difference between the two beams is longer than the coherence length, then the two 
beams will not interfere. Some very interesting light sources, most notably the 
 single-photon source used in the labs described at the end of this book, have very 
short coherence lengths. 

 In order to see interference with short coherence length sources, it is necessary to 
modify the polarization interferometer of  fi g.  2.8   so that the two arms are nearly equal 
in length. This can be done using the design shown in  fi g.  2.9  . Here, a half-wave plate 
whose fast axis is oriented at   o45   from the horizontal is inserted between the two 
PA HV ’s. This half-wave plate fl ips the polarizations of the two beams, making the 
behavior of the two arms symmetric, and allowing the path lengths of the two arms to 
be equalized. In general the path lengths of the two arms will not be perfectly matched. 
Indeed, it is possible to tilt one of the PA HV ’s, which has the effect of slightly changing 
the optical path lengths, allowing one to easily adjust the relative phase shift     between 
the two arms. Note that the relative phase shift     is  proportional  to the tilt angle of the 
PA HV  in  fi g.  2.9  , not  equal  to the tilt angle.    
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 The Jones matrix for the interferometer of  fi g.  2.9   can be calculated as follows. The 
upper beam effectively consists of a vertical polarizer, a half-wave plate that fl ips the 
polarization to horizontal, and a phase shift on this now horizontally polarized beam. 
The bottom beam consists of a horizontal polarizer and a half-wave plate that fl ips its 
polarization to vertical. The two beams are then added together: 

o o/ 2 45 / 2 45

0 1 0 0 0 1 1 00
1 0 0 1 1 0 0 00 1

0 00 0 .
1 00 0 1 0

V H

i

i i

e

e e

J J J J J J

(2.42)

 If the phase shift is adjusted to 0 this interferometer simply behaves as the half-wave plate in 
its center: horizontally polarized incident light emerges vertically polarized, and vice versa. 

 The polarization interferometer as described thus far does nothing to the intensity of the 
beam. This can be attributed to energy (power/intensity) conservation. The beam enters the 
interferometer, is split in two, and then recombined—all of the power at the input is passed 
to the output. To change the intensity of the beam we need to insert some form of polarizer. 

 The experimental arrangement shown in  fi g.  2.10   incorporates a polarizing beam split-
ter (in the form of a PA 45 ) at the end, and constitutes a full polarization interferometer. The 
PA 45  splits the beam into +45 °  and –45 °  components, which provide two different paths 
for the output power, and allows the intensity of each of the output beams to be modulated.     

 To show that this interferometer does indeed modulate the output intensity, let’s 
compute the effective Jones matrix for the +45 °  polarized output beam. Starting at the 
left of  fi g.  2.10  , the input beam fi rst passes through the polarization interferometer 
analyzed in eq. (2.42), and then passes through a polarizer oriented at +45 o . The Jones 
matrix for this combination is 

  
l/2

q=45o

f

PAHV PAHV

PA45     
  Fig 2.10     A complete polarization interferometer.   
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 If the input beam is polarized at +45 ° , the polarization vector of the output beam is 
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 The output beam is polarized at +45 ° , as expected. The output intensity is given by the 
input intensity   iI   times the square magnitude of this vector: 

 When the phase is adjusted to   0 ,   iI I  , the beams interfere constructively, and all 
of the incident light is output through the +45 °  output port of the PA 45 . When the phase 
is adjusted to    , so that   0I  , the beams interfere destructively, and to conserve 
energy the light must be emerging from the –45 °  output port instead. 

 Equation (2.45) clearly shows that the apparatus in  fi g.  2.10   acts as an interfer-
ometer; the beams interfere producing an intensity that is modulated depending on 
the relative phase between them [compare eq. (2.45) with eq. (2.A.9) in comple-
ment 2.A]. While the two beams inside the fi rst part of the interferometer have 
orthogonal polarizations, and would not normally interfere, the fi nal PA 45  projects 
the horizontal and vertical polarizations onto the +45° and –45° axes, where they do 
interfere.      

   2.6  References  

    [2.1]  The Optices Project,  http://webtop.msstate.edu/  
  [2.2]  E. Hecht,  Optics, 4th ed . (Addison Wesley, San Francisco, 2002). 
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         2.7  PROBLEMS    

         2.1     A left-circularly polarized beam is incident on a linear polarizer whose 
transmission axis makes an angle of     from the horizontal. By what factor 
is the intensity of this beam reduced? Does your answer depend on the 
angle    ?  

      2.2     (a)  Find the Jones matrix that corresponds to a beam passing through (in this 
order): a half-wave plate with its fast axis +22.5 °  from the horizontal, a 
quarter-wave plate with its fast axis vertical, and a quarter-wave plate with 
its fast axis at +45 °  from the horizontal.

  (b)  If horizontally polarized light enters this arrangement, what polarization 
comes out?  

      2.3*     (a)  Find the eigenvalues and eigenvectors for the Jones matrix corresponding to 
a polarizer oriented with its transmission axis at +45 ° . 

  (b)  Physically, what do these eigenvalues and eigenvectors correspond to? Does 
this make sense?  

      2.4     Prove that if a right-circularly polarized beam passes through a half-wave plate, 
the outgoing beam becomes left-circularly polarized,  independent of the ori-
entation of the fast axis of the wave plate . The outgoing beam also picks up an 
unimportant overall phase shift.  

      2.5     Prove that the Jones matrix for a quarter-wave plate with its fast axis at a gen-
eral angle     (  / 4J   in  table  2.2  ) agrees with   / 4 45J   for   o45  , to within an 
overall phase factor.  

      2.6*     Show that the   J   matrix [eq. (2.40)] adds a phase shift to a horizontally polar-
ized beam, but does nothing to a vertically polarized beam.  

      2.7     (a)  Compute the Jones matrix of a half-wave plate whose fast axis makes 
an angle of   1  from the horizontal, followed by a horizontal polarizer, 
followed by a half-wave plate whose fast axis makes an angle of   2  from 
the horizontal.

  (b)  Under what circumstances is this combination equivalent to a linear po-
larizer whose transmission axis makes an angle of     from the horizontal?  

      2.8     (a)  Compute the Jones matrix of a half-wave plate whose fast axis makes an 
angle of   1  from the horizontal, followed by a vertical polarizer, followed by 
a half-wave plate whose fast axis makes an angle of   2  from the horizontal.

  (b)  Under what circumstances is this combination equivalent to a linear polar-
izer whose transmission axis makes an angle of     from the vertical?  

      2.9*     Use your answers to problems 2.7 and 2.8 to explain how you can construct a 
PA 45  out of two half-wave plates and a PA HV .  

      2.10     (a)  Compute the Jones matrix of a quarter-wave plate whose fast axis makes 
an angle of +45 °  from the horizontal, followed by a horizontal polarizer, 
followed by a quarter-wave plate whose fast axis makes an angle of –45 °  
from the horizontal.

  (b)  If a right-circularly polarized wave is incident on this combination, what 
will be the output polarization and intensity of the transmitted beam?

  (c)  If a left-circularly polarized wave is incident on this combination, what 
will be the output polarization and intensity of the transmitted beam?  



2:  CLASSICAL DESCRIPTION OF POLARIZATION  •   41 

      2.11     Repeat problem 2.10, replacing the horizontal polarizer with a vertical polarizer.  
      2.12*     Use your answers to problems 2.10 and 2.11 to explain how you can construct 

a PA C  (a polarization analyzer that splits a beam into left- and right-circularly 
polarized states) out of two quarter-wave plates and a PA HV .  

      2.13     Show that the matrix in eq. (2.42) cannot affect the amplitude of a beam. In 
other words, show that for an arbitrary input unit polarization vector, the output 
vector is also a unit vector.  

      2.14     Analyze the intensity of the –45 °  output port of  fi g.  2.10  . Show that the interfer-
ometer conserves energy.  

      2.15*     You’re given the arrangement of half-wave plates and polarization analyzers 
shown in  fi g.  2.11  . The angles refer to the angle made by the fast axis of the wave 
plate w.r.t. the horizontal;  θ  1  is arbitrary. You wish this device to have absolutely 
no effect on the polarization of your beam: the polarization of the output is always 
exactly the same as that of the input, no matter what the input polarization is. 
How should  θ  3  and    be set in order to ensure that this is the case?      

       

  
l/2

q2=45o
l/2

q3=?

f=?

l/2
q1

PAHV PAHV

    
  Fig 2.11     Arrangement of half-wave plates and polarization analyzers for problem 2.15.   
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  Fig 2.A.1     A Mach-Zehnder interferometer.   

 The electric fi eld that emerges traveling to the right is the sum of the transmitted 
component of   1E   and the refl ected component of   2E  : 

     COMPLEMENT 2.A      

  Coherence and Interference   

 Here we’ll examine the phenomenon of interference, and show how it is affected by 
a property of waves called coherence. We’re just scratching the surface of coherence 
theory here; for more details see ref.   [2.A.1]  .   

   2.A.1    Interference   

 Consider the Mach-Zehnder interferometer shown in fi g. 2.A.1. A beam of light is split 
into transmitted and refl ected waves at the fi rst beam splitter (BS), and mirrors then 
redirect the light to the second BS where the waves recombine. By translating one of 
the mirrors, the path length difference between the two arms   l  can be adjusted, which 
leads to a relative phase shift of 
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 where   1r   is the fi eld refl ection coeffi cient for   1E  , and   2t   is the fi eld transmission coef-
fi cient for   2E  . 

 The electric fi eld is not a conserved quantity, it is energy (power/intensity) that must 
be conserved, and the intensity is given by the square magnitude of the fi eld. You’ll 
show in problem 2.A.1 that one way to satisfy energy conservation is for the fi eld 
refl ection and transmission coeffi cients to satisfy   6    

      1 2r r r, 1 2t t t, and 2 2 1r t   . (2.A.4) 

 For 50/50 beam splitters, which split the beams equally,   1/ 2r t  . The fi rst beam 
splitter behaves identically to the second, so the fi elds at the fi rst beam splitter trans-
form as 

 Here   1t   is the fi eld transmission coeffi cient for   1E  ,  2r    is the fi eld refl ection coeffi cient 
for   2E  , and we have incorporated the relative phase shift     between the fi elds into the 
  2E   term. In general the coeffi cients   1t   and   2r   are complex numbers, as they incorporate 
phase shifts induced on refl ection or transmission from the beam splitters. The electric 
fi eld from the downward port from the interferometer is 

1 1 2 2
i

d r t eE E E , (2.A.3)

    6.     Relations of this sort can be derived rigorously from Maxwell’s equations.  

1
1
2i irE E E , (2.A.5)

2
1
2i itE E E , (2.A.6)

 where   iE   is the electric fi eld at the input of the interferometer. The equations for the 
two output fi elds are then 
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 The intensity leaving the downward output port is 
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 where   iI   is the input intensity. Notice that for phase shifts of   2m  , where  m  is an in-
teger, the two waves interfere constructively at the downward output port, and all of the 
light emerges from this port. Energy conservation dictates that in such circumstances 
no light is emitted from the right output. It is also possible to adjust the phase so that all 
of the light is emitted from the right output. 

 You might fi nd it interesting to compare eq. (2.A.9) to eq. (2.45).    

   2.A.2    Coherence   

 Assume that the path length difference between the two arms of our Mach-Zehnder 
interferometer is nearly 0. Furthermore, assume the interferometer is well constructed, 
and isolated from vibrations. The relative phase of the two beams when they recombine 
at the second beam splitter is then constant, resulting in stable interference. The two 
waves striking the second beam splitter are coherent with respect to each other. 

 Now imagine that we vibrate one of the mirrors rapidly, with a vibration amplitude 
of larger than a wavelength. The phase shift is no longer constant, so the intensities of 
the two output ports fl uctuate rapidly. If the timescale of the fl uctuations is shorter than 
the response time of our detector (e.g., an eye), the detector will average over the fl uc-
tuations. Mathematically, we can model this by assuming that the relative phase between 
the two arms is a random variable. The average intensity leaving the downward output 
port of the interferometer can then be obtained from eq. (2.A.9) by averaging over  

 If the path length difference fl uctuates by more than a wavelength, then the relative 
phase fl uctuates by more than   2  , and the cosine term averages to 0, leaving 

1 cos
2

1 cos .
2
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 The average intensity emerging from the right output port is the same. 
 The net result is that half of the light leaves from the right output, and the other half 

leaves downward. There is no interference—the intensity does not depend on the rela-
tive phase between the two arms. The two waves reaching the second beam splitter are 
incoherent with respect to each other, meaning that their relative phase varies randomly 
and rapidly, by more than   2  . 

 If the path length difference between the two arms fl uctuates rapidly, but the fl uc-
tuation amplitude is less than a full wavelength, then the cosine does not average to 0. 
The interference pattern remains, but the modulation depth of the output intensity (i.e., 
the visibility of the interference) is decreased. In this case the waves in the two arms of 
the interferometer are said to be partially coherent. The visibility  V  of an interference 
pattern is defi ned as 
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 where   maxI   and   minI   are the maximum and minimum intensities, measured as the phase 
of the interferometer is scanned. 

 If the fi elds are coherent, we analyze the interferometer by saying that the  fi elds  split 
and recombine at the beam splitters as described above. If the fi elds are incoherent, we 
can treat the interferometer more simply by saying that the  intensities  split and recom-
bine at the beam splitters. The intensity refl ection and transmission coeffi cients are 
given by   2R r   and   2T t  , and satisfy   1R T  . There is no phase associated with 
the intensity of a beam, so the relative phase of the two arms plays no role if the beams 
are incoherent.    

   2.A.3    Coherence Length   

 Now imagine that the Mach-Zehnder interferometer in fi g. 2.A.2 is well-designed so 
that the mirrors do not vibrate, and the two arms are adjusted so that the path lengths 
are perfectly equal and   0 . Further, imagine that there is some form of phase shift-
ing device placed in the beam  before  it enters the interferometer. This device varies the 
phase of the input fi eld with random phase shifts of over   2   in amplitude. The timescale 
on which this phase variation occurs is called the coherence time   c . Associated with 
the coherence time is a coherence length   cl  , which is the distance that light travels in 
one coherence time:   c cl c  . 

 Since we’re assuming that the path lengths of the two arms are perfectly equal, at the 
second beam splitter the two fi elds   1E   and  2E    are perfect copies of each other. Each of 
these fi elds contains the random phase variation imposed on the input fi eld, but the 
phases of the two fi elds fl uctuate  together . The phase randomization does not affect the 
relative phase of the two fi elds, so they are coherent with each other, and will interfere 
at the second beam splitter as described above [e.g, eq. (2.A.9)]. 

 Now assume that the path length difference between the two arms is fairly large, 
much larger than the coherence length (  cl l  ). When the two fi elds   1E   and   2E   reach 
the second beam splitter they are no longer perfect copies of each other, because one 
has been delayed by a time much longer than the coherence time. Each fi eld fl uctuates 
randomly, and this time they do  not  fl uctuate together—the relative phase between the 
two beams fl uctuates randomly. In this case the two beams are incoherent with each 
other, and will not interfere at the second beam splitter. 

 The coherence time of a light source is determined by the inverse of the bandwidth 
  f   (frequency spread) of the source 

max min

max min

I I
V

I I
, (2.A.12)

1
2c f

. (2.A.13)

 This relation is only approximate because in general the coherence time depends on the 
details of the source spectrum, not just its bandwidth. 
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 The bottom line is that sources with large bandwidths have short coherence times, 
and correspondingly short coherence lengths. Since the path length difference between 
the two arms of an interferometer must be shorter than the coherence length in order to 
see interference, interference from large bandwidth sources can only be observed if the 
path lengths of the two arms are very closely matched.         

   2.A.4  REFERENCES  

    [2.A.1]  E. Hecht,  Optics, 4th ed . (Addison Wesley, San Francisco, 2002), Ch. 12. 

         2.A.5  PROBLEMS    

           2.A.1*     For a Mach-Zehnder interferometer, show that eq. (2.A.4) is consistent with 
energy conservation.  

      2.A.2     For a Mach-Zehnder interferometer, are the relationships 

     1 2r r r, 1 2t t t, and 2 2 1r t , (2.A.14)  

 consistent with energy conservation?  

      2.A.3     A helium-neon laser has a central wavelength of   633 nm , and a bandwidth 
of approximately 1 GHz. What is its coherence length?  

      2.A.4     A green LED has a central wavelength of   530 nm , and a wavelength spread 
of   10 nm . What is its coherence length?  

      2.A.5     The measured intensity emerging from a Mach-Zehnder interferometer is found 
to be  

    0 0.8 0.2cosI I  . (2.A.15) 

 What is the corresponding visibility?    
   

         



         CHAPTER 3 

Quantum States  

    Now that we know something about classical polarization, it’s time to learn about the 
quantum mechanics of polarization. Quantum mechanically the polarization of a beam 
is described by a quantum state. The quantum state is a vector, but you’ll see that it’s a 
very different sort of vector than is used in classical physics. 

 Before going into specifi cs, we need to emphasize an important difference between 
the optical beams that will be used in the experiments described in this chapter and 
those described in the last. In  chapter  2   the beams were classical electromagnetic 
waves, and we described them in terms of the electric fi eld  E  . In this chapter the beams 
are made of individual photons. You should have been exposed to the concept of a 
photon before; one way to think of a photon is as a quantum (an indivisible unit) of 
electromagnetic energy. But be careful! People often think of photons as being “parti-
cles” of light. While conceptualizing a photon in this way is occasionally useful, it’s an 
overly simple picture that can easily lead to confusion. 

 While it is possible to describe a classical electromagnetic fi eld using quantum 
mechanics, there is no way to describe a purely quantum fi eld using classical electro-
magnetism. In this chapter we are interested in the behavior of individual photons. We 
cannot completely describe individual photons using Maxwell’s equations, and must 
describe them using their quantum states. This is a subtle, but important, point that is 
explored further in labs 1 and 2.    

   3.1    STATE VECTORS   

 We’ll approach this discussion observationally—we’ll describe a series of experiments 
and observations made about them. Then we’ll apply a mathematical description to 
them. These are not just  gedanken  (thought) experiments, these are experiments you 
can perform yourself in the laboratories described at the end of this book.   
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   3.1.1    Experiment 1   

 Imagine that we have a source that produces a beam of light. We determine, possibly 
using the techniques described in lab 2, that the beam consists of individual photons 
that we can count. As shown in  fi g.  3.1  , this beam is incident on a polarization analyzer 
oriented to separate the beam into horizontally and vertically polarized components—
a PA HV .  N  vertically polarized photons are transmitted by this polarization analyzer 
and horizontally polarized photons are blocked. The vertically polarized photons 
are incident on a second PA HV , and all of these photons are transmitted to its vertical 
output port.     

 Classically we would say that the incident beam contains both horizontal and verti-
cal polarization components that the fi rst polarization analyzer splits apart. The second 
analyzer takes a vertically polarized input beam, and transmits 100% of the beam out 
of its vertical output port. Thus, what we already know about the polarization of classi-
cal waves also applies to the polarization of individual photons, at least in this simple 
situation. 

 Classically we described a vertically polarized wave in terms of its polarization vec-
tor   V  . Quantum mechanically we say that a vertically polarized photon is in state   V  ; 
similarly, a horizontally polarized photon would be in state   H  . It is conventional to 
denote an arbitrary quantum state as    . In this notation, which is originally due to 
Dirac, the state is a vector quantity; hence     is often referred to as the state vector.   1    
Furthermore,     is a particular type of state vector that we refer to as a “ket,” for rea-
sons that will soon become transparent. 

 Don’t confuse   V   with   V  . State vectors “live” in an abstract space called a Hilbert 
space, and, as such, don’t really “point” in a particular direction. This distinction is 
subtle for polarization, and it may often sound like   V   and   V   are the same. However, 
when we get to other quantum systems (e.g., electron spin) it will become more obvi-
ous that Hilbert space vectors and physical vectors are not the same. 

 Back to experiment 1, which is re-depicted in our new quantum mechanical notation 
in  fi g.  3.2  . Here we say that the source produces photons in some polarization state    . 
We don’t know what that state is, but it doesn’t really matter. The fi rst PA HV  splits the 
beam into vertically and horizontally polarized photons, and we keep only those that 

  PAHV
PAHV

N N

    

  Fig 3.1     Experiment 1.   

   1.     Note that in addition to polarization, photons have other properties as well, such as energy and propa-
gation direction. The full state vector should also describe these properties, but for the moment we’re only 
interested in polarization. 
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are vertically polarized. We say that the PA HV  in combination with the beam block 
 prepares a beam of photons in state   V  ; the PA HV  and the beam block serve as a state-
preparation device. We know that the photons have been successfully prepared in state 
  V  , because when we analyze them with the second PA HV  we fi nd that they remain in 
this state with 100% certainty. If we wish to prepare photons in state   H  , we would 
simply block the vertical output of the fi rst PA HV  instead, and the horizontally polarized 
photons from this analyzer would be transmitted through the horizontal port on the 
second analyzer with 100% certainty.         

   3.2    BASIS STATES   

 We can write an arbitrary classical polarization vector in the   H  and   V   polarization 
basis. Experiment 1 suggests that we should be able to do the same thing with quantum 
mechanical polarization states. Unless we get evidence to the contrary, it’s reasonable 
to assume that the vectors   H   and   V   form a basis that can represent other vectors in 
the Hilbert space of polarization states. We can express a general polarization state as a 
linear combination of   H   and V    states:  

  H Vc H c V  , (3.1)

where the constants   Hc   and   Vc   are complex numbers. A state of this form is said to be 
a superposition of the H    and   V   states.   

   3.2.1    Orthogonality and the Inner Product   

 The vectors   H  and   V   are orthogonal (i.e., there is no component of   H  along   V  ). Ex-
periment 1 indicates that this is true for the state vectors as well. When a photon in state 
  V   is incident on the second polarization analyzer it comes out in the same state; there 
is no   H   component to   V  . Similarly, if we had repeated experiment 1 by sending 
H    photons into the second analyzer, we would fi nd that they have no   V   component. 

 The inner product of orthogonal vectors is 0. However, before we talk about the 
inner product in Hilbert space, we need to defi ne a new type of vector called a “bra.” 
For every ket vector     we can associate a corresponding bra vector    (think of 
associating a row vector with a column vector). The vector space of bras is often 
referred to as the dual space to the vector space of kets. 

    PA
HV
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N N
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V Vψ

  

  Fig 3.2     Experiment 1 re-depicted in terms of quantum state vectors.   
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 We can form an inner product by placing a row vector to the left of a column vector, 
a combination which results in a scalar. The analogy here is that we place a bra to the 
left of a ket and form a “bracket” (get it now?), which is an inner product:

   1 2  c , (3.2)

where  c  is a complex number. Since   H   and   V   are orthogonal, we must have 

    0H V V H  . (3.3)

Furthermore, it is convenient to deal with orthonormal basis sets, so 

    1H H V V  . (3.4) 

 As stated above in eq. (3.1), an arbitrary polarization state can be written as 
  H Vc H c V  . For a given state, how does one determine the coeffi cients in this 
linear combination? They can be found by projecting the basis states onto     using the 
inner product. For example:

   

H V

H V

H V

H H c H c V

H c H H c V

c H H c H V
0

.Hc

  (3.5)

Similarly,   VV c  . 
 Given the ket     expressed in a particular basis, how do we fi nd the corresponding 

bra    ? We replace all the kets by their corresponding bras, and replace all the con-
stants by their complex conjugates, that is, 

    H V H Vc H c V c H c V  . (3.6)

It is then straightforward to see that 

    *
HH c H  . (3.7)

This is a general property of the inner product of state vectors; reversing the order of 
the product yields the complex conjugate. 

 Since we generally work with normalized states, we’ll impose the condition 

    

H V H V

H H H V

c H c V c H c V

c c H H c c H V
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V Hc c V H
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22 1.

V V

H V
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c c

  (3.8)
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For a normalized vector, the sum of the square magnitudes of its coeffi cients in an 
orthonormal basis add up to 1. We’ll soon use this fact to give a physical interpretation 
to the coeffi cients. 

  Table  3.1   illustrates some analogies between vectors in different vector spaces.         

   3.3    OTHER STATES   

 Experiment 1 allowed us to establish the existence of basis vectors and orthogonality. 
Let’s apply these concepts to help us understand some other states.   

   3.3.1    Experiment 2   

 Imagine that we prepare a beam of photons in state   V  , and then send that beam through 
a polarization analyzer whose axes are oriented at   45 °  (a PA 45 ). As shown in  fi g.  3.3  , if 
 N  vertically polarized photons are incident on the PA 45 , half are transmitted from the +45 °  

     Table 3.1     Analogies between vectors in three different vector spaces.           

   Property  Real (2-D) Space  Row/Column Vectors  QM (Hilbert Space)     

 Basis vectors, 
fi rst type 

   ,x yu u    Column vectors

   1 0
,

0 1
  

 Kets
  H  ,   V     

 Basis vectors, 
second type 

 No difference 
  ,x yu u   

 Row vectors
  1 0 , 0 1   

 Bras 
  H  ,   V     

 General vectors,
fi rst type    x x y ya aa u u   

   
1

1 2
2

1 0
0 1

a
a a

a   
   H VH V     

 General vectors, 
second type 

 No difference 
  x x y ya aa u u   

   

1 2

1 21 0 0 1

a a

a a   
   H VH V     

 Inner product  Dot product 
  a b     

1
1 2

2

b
a a

b   
 Bracket 
  1 2     

 Orthogonality 0x yu u 1
0 1 0

0
0H V

 Normalization 1x xu u
1

1 0 1
0

1H H

 Finding coeffi cients 
(Use inner product 
with basis vectors.) 

x xa u a 1
1

2

1 0
a

a
a H H    
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    2.     Of course, there is the important distinction that a classical wave is split deterministically, while 
photons are split randomly. 

port in state   45  , and the other half are transmitted from the –45° port in state   45  . If 
we repeat this experiment by sending   H   photons into the PA 45  we obtain the same result.     

 When we say that half of the photons emerge from each of the output ports, we don’t 
mean that  exactly  half of the photons emerge from each port, we mean that on  average  
half of the photons emerge from each port. The transmission of photons through the PA 45  
is a random process. It is not possible to say for certain which port any given photon will 
emerge from, but the probability of exiting either of the output ports is 50%. If we were 
to repeat experiment 2 many times, we would fi nd that the average number of photons 
emitted from each port is  N /2, with a standard deviation of approximately   / 2N  . 

 This observation is consistent with what we would obtain using classical waves: a 
wave polarized along   V   would be split by a PA 45  into equal   45  and   45   components.   2    
This suggests that   V   can be written as a linear combination of   45   and   45  . How-
ever, might there be another explanation? Before we write   V   in terms of   45   and 
  45  , we need to be sure that there is no other explanation for experiment 2. 

 Maybe it is the case that the polarization components of a photon along  + 45 °  are 
completely  independent  of the polarization components along the horizontal and verti-
cal axes. If that were true, then the PA 45  would split the beam into   45   and   45   
because of the properties of state    , not because of the properties of state   V  . How 
would we test this possibility? 

 Think generally about how we test whether properties are independent. Suppose we 
have a classical particle that has momentum   p . First we measure the  x -component of 
its momentum and obtain the value xp   . We subsequently measure the  y -component of 
its momentum and obtain the value   yp  . In classical physics  xp   and   yp   are independent 
quantities, so the fact that we measured   yp   for the  y -component is due to the properties 
of   p , and has nothing to do with the fact that we measured  xp   for the  x -component. We 
can verify that   xp   and  yp   are independent by going back and measuring   xp   again after 
the   yp   measurement. We obtain the same value for  xp   again, because the measurement 
of   yp   in no way infl uences the measured value of   xp  .    

   3.3.2    Experiment 3   

 Similarly, for individual photons we can test whether the polarization components 
along  + 45 °  are independent of the horizontal and vertical components by alternating 
measurements along the different axes. Such a series of measurements is illustrated as 

  PA
HV

PA45

N N/2

 H

 V ψ 45+

45− N/2

     

  Fig 3.3     Experiment 2. 
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experiment 3, in  fi g.  3.4  . We see that the second PA HV  splits the   45   photons into V    
and   H  , which indicates that the polarization components of a photon along  + 45 o  are 
 not  independent of its polarization components along the horizontal and vertical axes; 
this is also true classically. If they were independent we would expect all  N /2 photons 
incident on the second PA HV  to emerge in state   V  , because the PA 45  would not have 
disturbed the fact that they were initially prepared in state   V  .        

   3.4    PROBABILITIES   

 Experiment 3 compels us to write   45   as a linear combination of   H   and   V  :

  45 H Vc H c V   . (3.9) 

 But how do we determine the values of the coeffi cients Hc    and   Vc  ? Looking at the out-
put of the second PA HV  in  fi g.  3.4   shows that the state 45    is split into equal amounts 
of H    and   V  , so it is reasonable to assume that the magnitudes of   Hc   and   Vc   are the 
same. If we insist that   45   is normalized, then eq. (3.8) yields the constraint that 
  22 1H Vc c  . This leaves us with 

   22 1
2H Vc c , (3.10)  

 or 

    1
2H Vc c . (3.11)  

 The above is not just math, there’s some important physics involved. We have 
assigned a  physical meaning  to the coeffi cients in a linear combination such as eq. 
(3.9). We have said that the square magnitude of the coeffi cient multiplying a particular 
polarization state is equal to the probability that the photon will be measured to have 
that polarization. With this in mind, the coeffi cients   Hc   and   Vc   are often referred to as 
“probability amplitudes,” a term originated by Richard Feynman. The probability is the 
magnitude squared of the probability amplitude. 

 Remember, however, that the coeffi cients are complex numbers. Now that we know 
what their magnitudes are, we need to determine their phases. Using eq. (3.11), we can 
rewrite eq. (3.9) as 

    1 1 145
2 2 2

iii i V HVH He H e V e H e V  . (3.12) 

  PA
HV PA45

N N/2

 H

 V ψ 45+

45−  H

 V N/4

N/4
PA

HV      
  Fig 3.4     Experiment 3. 
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 The constant phase factor i He    in front is an overall, or absolute phase factor. It has a 
magnitude of one, and in this experiment it does not affect any measurable quantities, 
so we can safely take it to be equal to 1 (  0H  ).   3    This leaves 

    
145
2

i VH e V   , (3.13)

and we need more information to determine the phase   V  . 
 If we repeat experiment 3, but select the   45   beam instead of the   45   beam, we’d 

get the same result: it would be made of 50%   H   and 50% V   . Thus, the analysis 
above also applies to this state, so 

    '145
2

i VH e V  . (3.14)

The phase   'V  must be different from   V  , otherwise   45   and   45   would be the same 
state. 

 If we repeat experiment 1 ( fi g.  3.2  ) using PA 45  measurements instead of PA HV  meas-
urements, we fi nd that the states   45   and   45   are orthogonal. This means that their 
bracket must be zero. 

    

'

''

'

145 45
2
1
2
1 1 0 .
2

i iV V

ii i V VV V

i V V

H e V H e V

H H e H V e V H e V V

e

  (3.15)

This is satisfi ed if 

    'V V  . (3.16) 

 It is typical to choose 0V   , which leaves   'V  . Our fi nal answer is thus 

    

145 ,
2

145 .
2

H V

H V
  (3.17)

The choice of 0V    is motivated by the fact that it makes the states in eq. (3.17) con-
sistent with the classical polarization vectors   45  and   45  ( see    table    2.1   ). 

 Let’s recap what we’ve learned so far from experiment 3 ( fi g.  3.4  ). The middle 
measurement, using a PA 45 , prepares a beam in the state   45  . A photon in the state 
  45   is then analyzed with a PA HV . This measurements yields 50% probability of fi nd-
ing a horizontally polarized photon and 50% probability of fi nding a vertically polar-
ized photon. These probabilities are related to the coeffi cients in eq. (3.9) by 

    3.     Just as the absolute phase of an electromagnetic wave does not affect the measured intensity. 
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22

22

145 45 ,
2

145 45 .
2

H

V

P H c H

P V c V
  (3.18) 

 The notation that we’re using for the probabilities makes it clear that the measured 
probability is a conditional probability (see sec. 1.1.4);   45P H   is the probability 
that we measure a horizontally polarized photon, given that the beam is prepared in the 
state   45  . We’ll discuss measurement probabilities in more depth in  chapter  5  . 

 Equation (3.18) gives a prescription for fi nding the magnitudes of the probability 
amplitudes from measured probabilities. To determine the phases we need more infor-
mation; here, an important piece of that information comes from the orthogonality of 
the   45   and   45   states.    

   3.5    COMPLEX PROBABILITY AMPLITUDES     

   3.5.1    Experiment 4   

 Experiment 4, shown in  fi g.  3.5  , is the same as experiment 3, except that we replace the 
middle PA 45  by a circular polarization analyzer PA C , which splits the beam into left- and 
right-circular polarization states.   4     Figure  3.5   shows the   L   state being broken into its 
horizontal and vertical components by a PA HV , where we fi nd that this state is made of 
50%   H   and 50%   V  . If we repeat this experiment and instead analyze the   R   state, 
we will get the same result.    

 Applying the same arguments we used in analyzing experiment 3, we conclude that 
the L    and   R   states must be written as linear combinations of   H   and   V  . Since the 
probabilities of   H   and V    are equal, we again fi nd that the magnitude of the coeffi -
cients in the linear expansion of   L   in the  HV -basis are both equal to 1/ 2   . So, similar 
to eqs. (3.13) and (3.14), we write the   L   and   R   states as 

    
'

1 ,
2

1 .
2

i V

i V

L H e V

R H e V
  (3.19) 

    4.     In problem 2.12 you showed that it is possible to construct a PA C  out of a PA HV  and a pair of quarter-
wave plates. 
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  Fig 3.5     Experiment 4. 
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 Repeating experiment 1 ( fi g.  3.2  ) using PA C  measurements instead of PA HV  measure-
ments, shows that   L   and   R   are orthogonal, or   0L R  . Using this fact, and eq. 
(3.19) yields 

 'V V    , (3.20) 

 which is similar to eq. (3.16).    

   3.5.2    Experiment 5   

 To this point, everything we did in the search for the phases of the   45   and   45   
states applies equally as well to the   L   and   R   states. Now, however, we can’t choose 
  0V   (making   'V  ), because that would make the states   L   and   R   the same as 
the states   45   and 45   . We know that they’re not the same because of experiment 
5, shown in  fi g.  3.6  .    

 In experiment 5, the last PA 45  tells us that the probabilities of measuring  + 45 °  polar-
izations are both 1/2 when a beam is prepared in state   L  :   

    
2

2

145 45 ,
2
145 45 .
2

P L L

P L L

  (3.21) 

 Using eqs. (3.17) and (3.19), we fi nd that 

    
145
2
1 1 ,
2

i V

i V

L H V H e V

e

  (3.22) 

 so 

    

2 145 1 1
4
1 2 2cos .
4

i iV V

V

L e e
  (3.23) 
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  Fig 3.6     Experiment 5. 
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 This must be equal to 1/2 by eq. (3.21), so   / 2V  . Make the choice that it’s posi-
tive, which makes   ' 3 / 2V   via eq. (3.20). Substituting these values into eq. (3.19) 
yields 

    

1 ,
2
1 .
2

L H i V

R H i V

  (3.24) 

 We were left with some degree of fl exibility in choosing   V  , but we were forced into 
having complex probability amplitudes in eq. (3.24). The choice we made makes the 
polarization states   L   and   R   consistent with the polarization vectors   L  and   R  (see 
 table  2.1  ).     

   3.6    ROW AND COLUMN VECTOR NOTATION   

 In  chapter  1   we said that there are many ways to express a vector. This is also true of 
quantum mechanical state vectors in Hilbert space. Let   H Vc H c V  ; the coef-
fi cients   Hc   and   Vc   completely specify the state. Thus, we can write   5    

    H

V HV HV

c H
c V

 . (3.25)

We’ve placed the subscript  HV  on the vector to make it clear that the coeffi cients are 
expressed in the  HV -basis. (It’s fairly obvious that this is the case here, but it won’t 
always be.) There is a defi nite ordering implied here—you need to know that the coef-
fi cient of   H   comes fi rst, and the coeffi cient of V    comes second. 

 There’s nothing special about the  HV -basis, we could also write 

    
45

45
45

 . (3.26)

We write kets as column vectors, and bras as row vectors:

  H Vc H c V  ,

    5.     We’re going to continue to use the     symbol to denote “is represented by” for quantum state vectors.  
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  * *
H V HVHV HV

c c H V H V  , (3.27)

where we’ve used the fact that  1 2 2 1*  . 
 Some specific examples of polarization state vectors we’ve talked about in this 

chapter are given in  table  3.2  . If you compare this to  table  2.1  , you’ll notice that 
the column vector for a given polarization state is the same as its corresponding 
classical Jones vector. This is because we have chosen the phase factors in the 
coefficients to make them the same, as described above. Please keep in mind, how-
ever, that even though we’re using the same notation, the quantum and classical 
vectors mean (at this point subtly) different things, as they exist in different vector 
spaces.    

 The row and column vector notation for quantum states is useful for doing things 
like evaluating inner products, as seen in the following example. 

 EXAMPLE 3.1 

  Compute  45H  . 
 Using the vectors from  table  3.2  , and rewriting   H   as a row vector:

     Table 3.2     Bra and ket notation, and column vectors, of important polarization states. The 
subscript 45 refers to vectors written in the   +45  ,   +45   basis, while the subscript C refers to 

the basis of circular polarization states   L   and   R  .         

   Polarization State  Bra, Ket Notation 
in   H  ,   V   Basis 

 Column Vector 
in   H  ,   V   Basis     

H H 1
0 HV

V V 0
1 HV

45

1
45

0
145
2

H V
11
12 HV

45

0
45

1
145
2

H V
11
12 HV

1
0 C

L
1
2

L H i V 11
2 HVi

0
1 C

R
1
2

R H i V
  

11
2 HVi
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1145 1 0
12

11 1 0
12

1 (1)(1) (0)(1)
2

1 .
2

HV
HV

HV
HV

H

   (3.28)    

   3.7    INTERFERENCE     

   3.7.1    Experiment 6   

 Look at the (admittedly odd at this point) arrangement for experiment 6, shown in  fi g. 
 3.7  (a). A beam of photons in the   45   state is split equally at a PA HV . The   V   beam 
passes through a half-wave plate with its axis oriented at 45°, and is converted to a 
beam of photons in state   H  —a half-wave plate acts the same way on the polarization 
states of individual photons as it does on the polarization vectors of classical waves 
(more on this in the next chapter). This   H   beam is defl ected by a PA HV  , but otherwise 
it is unaltered. Finally, the   H   beam is split equally by a PA 45  . Apart from the appar-
ently extraneous half-wave plate and second PA HV  , there is nothing unexpected in this 
experiment.  Figure  3.7  (b) shows what would happen in a similar arrangement in which 
the V    beam is blocked.    

 What would happen if we perform experiment 6 as shown in  fi g.  3.7  (c), where we 
don’t block either beam? How will the beam split on the fi nal polarization analyzer? A 
very reasonable thing to do would be to look at fi gs. 3.7(a) and (b) and say, “When the 
H    beam is incident on the last analyzer it splits equally, and the   V   beam behaves the 

same. Since the beam is split equally in either case, if both beams are incident on the 
PA 45  they will both be split equally, and  N /2 photons will come out in the state   45   
and  N /2 photons will come out in the state   45  .” 

 Physics is an experimental science, so you don’t have to wonder whether your 
hypothesis is correct for long, you simply do the experiment, as described in more 
detail in lab 3. The results are shown in  fi g.  3.8  : All  N  photons come out in the state 

45   ! Your fi rst reaction will probably be to go back to your original hypothesis and 
wonder, “If  N /4 photons come out in the 45  state when I put the   H   beam into the 
fi nal analyzer [fi g 3.7(a)], and  N /4 photons come out in that same state when I put in the 
V    beam [fi g 3.7(b)], how can I get  no  photons in the   45   state when I use both? How 

do these photons cancel each other out?”    
 With some refl ection, hopefully you’ll recall the discussion of the polarization inter-

ferometer in sec. 2.5. Experiment 6 looks similar to the experimental arrangement 
shown in  fi g.  2.10  , where a classical wave with +45° polarization was incident on a 
polarization interferometer. With the proper phase adjustment, all of the light emerged 
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with +45° polarization. In the classical case we interpreted the results in terms of wave 
interference. 

 To verify that interference is occurring in experiment 6, we can vary the path length 
(phase shift    ) between the two beams by simply tilting one of the PA HV ’s, just as we 
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  Fig 3.7     (a) and (b) show arrangements for experiment 6 in which one of the beams is blocked, 
while (c) asks what will happen if neither beam is blocked. 
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  Fig 3.8     The result for experiment 6 when neither beam is blocked. 
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did in the classical case, and we can then count how many photons come out in the 
  45   and   45   states. Data for such an experiment, obtained by students using the 
procedure described in lab 3, is shown in  fi g.  3.9  . We see that, indeed, when the phase 
difference between the beams is 0 nearly all of photons exit in the   45   state. As the 
phase is varied the output photons oscillate between the   45   and   45   states, clearly 
displaying interference.       

   3.7.2    Which Way?   

 Experiment 6 represents a polarization interferometer. The important point is that in-
terference occurs  even though there is only one photon at a time in the interferometer ! 
This may strike you as odd because, as mentioned at the beginning of this chapter, 
you may be thinking of photons as “particles” of light, and you’re not used to parti-
cles displaying interference. While in some sense photons may behave like particles of 

  

(a)

(b)

     
  Fig 3.9     Measured data for experiment 6 displaying single photon interference. (a) The count 

rates for photons exiting in state   +45  , and (b) the count rates for photons exiting in state 

  –45  . Using the procedure described in labs 2 and 3, it was verifi ed that only a single pho-

ton at a time is present in the interferometer. (These data were acquired by A. Gogo and 

W.D. Snyder.) 



 62   •  Q U A N T U M  M E C H A N I C S

light energy, they are by no means classical particles, as they clearly display wave-like 
properties as well. 

 A question that often arises is, “Which path through the interferometer did the pho-
ton take?” The interference pattern shown in  fi g.  3.9   is a function of path length (phase) 
difference between the two arms of the interferometer, and as such it is a function of 
both paths. The only way to explain the measured interference pattern is by assuming 
that  each photon takes both paths  through the interferometer. Anthropomorphizing, if 
each photon took only one path or the other, there would be no way for it to “know” the 
path length difference; it would be equally likely to exit as a   45   or a   45   photon, 
independent of the path length difference. This is not what happens.       

   3.8  PROBLEMS    
     
       3.1*       represents the state of a beam of photons linearly polarized at an angle of 

   from the horizontal. Write     as a linear combination of   H   and   V  . [Hint: 
Use what you know about classical linear polarization.]  

      3.2     What is the probability that a photon in state    , as described in problem 3.1, 
will be measured to have vertical polarization?  

      3.3     What is the probability that a photon in state   , as described in problem 3.1, 
will be measured to have linear polarization along +45°?  

      3.4*     A beam of photons in state   V   is sent through a series of two polarization ana-
lyzers, as illustrated in  fi g.  3.10  . The angle    is measured with respect to the 
horizontal, and the state     is described in problem 3.1.    

     (a) What fraction of the input photons will survive to the fi nal output? 
  (b)  At what angle     must the PA     be oriented so as to maximize the number of 

photons that are transmitted by the PA HV ? What fraction of the photons are 
output for this value of    ?

  (c)  What fraction of the photons are transmitted if the PA     is simply removed 
from the experiment?  

      3.5     What is the probability that a photon in state    , as described in problem 3.1, 
will be measured to have right-circular polarization?  

      3.6*     A general (elliptical) polarization state can be written in terms of 2 parameters, 
   and    as:

    1 cos sinie H e V  . (3.29)  

  Given the state 1e  ,  fi nd the normalized state   2e   that is orthogonal to   1e  .  

  PAθ
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HV

H
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o90θ+
     

  Fig 3.10     The experiment in problem 3.4. 
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      3.7     Using both bras and kets, and row and column vectors, compute   45 L  .  
      3.8     Using both bras and kets, and row and column vectors, compute   145 e   [see 

eq. (3.29)].  
      3.9     Compute the probability that a photon in the state   1e   [eq. (3.29)] will be meas-

ured to have right-circular polarization.  
      3.10     Determine the column vectors representing the states 45    and   45   using the 

states L    and   R   as a basis.  
      3.11*     If the beam entering the interferometer of  fi g.  3.8   is not in the state   45  , but 

rather in the state V   , would you expect to see interference? Explain why, or 
why not.  

      3.12     If the beam entering the interferometer of  fi g.  3.8   is not in the state   45  , but 
rather in the state   R  , would you expect to see interference? Explain why, or 
why not. 

    Consider the following experimental arrangement, which applies to the following three 
problems: a beam of photons is sent into a PA HV  , which allows us to measure the   H   
and   V   components. A measurement of the horizontal/vertical polarization (call it   HV  ) 
that yields a horizontally polarized photon takes on the value   1HV  , and a meas-
urement that yields a vertically polarized photon takes on the value   1HV  . A series 
of polarization measurements thus consists of a string of +1’s and –1’s; we can compute 
the statistics of these measurements.  

      3.13*     If the beam of photons in state   H  :
  (a)What is the probability that a given measurement yields +1? –1?
  (b) What is the mean value of   HV  ?
  (c) What is the standard deviation of   HV  ?  
      3.14*     If the beam of photons in state   45  :
  (a)What is the probability that a given measurement yields +1? –1?
  (b) What is the mean value of   HV  ?
  (c) What is the standard deviation of   HV  ?  
      3.15     If the beam of photons in state   1e   [eq. (3.29)]:
  (a)What is the probability that a given measurement yields +1? –1?
  (b) What is the mean value of   HV  ?
  (c) What is the standard deviation of   HV  ?      
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         CHAPTER 4 

Operators  

    Classically and quantum mechanically, polarization can be described in terms of vec-
tors. We’ve stressed that these vectors are different from each other, but they certainly 
have many similarities. We’ve found that objects such as wave plates and polarizers 
can change the polarization of a wave, and we can describe their operation mathemati-
cally using matrices. More generally, the mathematical objects that change one vector 
into another are called operators, and in quantum mechanics operators change one state 
into another. 

      4.1    OPERATORS   

 Recall example 2.2, in which a beam was incident on a linear polarizer. We found the 
output polarization vector by multiplying the input polarization vector by the Jones 
matrix for the polarizer. Quantum mechanically the behavior is analogous. Objects 
such as polarizers transform one polarization state into another, and we refer to them as 
operators because they perform a state transformation operation. This looks like

   1 2Ô c  , (4.1)

where   Ô  is an operator that changes the state, and the constant  c  is in general complex. 
We’ll adopt the notation that the caret symbol ^ placed over something denotes an op-
erator. By convention operators get placed next to the vertical bar in the state symbol, 
so while   Ô   and   Ô  make sense,   Ô  and  Ô   don’t. 

 Suppose an input quantum state   i   is operated on sequentially by a series of oper-
ators   1 2

ˆ ˆ ˆ, , , NO O O  . After the fi rst operation the state becomes

   1 1
ˆ

iO  . (4.2)
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After the second operation this is transformed to

   2 2 1 2 1 2 1
ˆ ˆ ˆ ˆ ˆ

i iO O O O O  . (4.3)

After  N  operations this is

   1 2 1
ˆ ˆ ˆ ˆ...N N N N iO O O O  . (4.4)

Just as the classical Jones matrices had to be written from right to left to determine the 
effective Jones matrix, the proper ordering for quantum operators is also from right to left

   2 1
ˆ ˆ ˆ ˆ...eff NO O O O  . (4.5)

Also as in classical physics, the order of operations in quantum mechanics matters, in 
general   2 1 1 2

ˆ ˆ ˆ ˆO O O O  . However, we’ll soon see that in quantum mechanics this fact, while 
not surprising, turns out to be somewhat more profound than it is in classical physics. 

 While the commutative property does not hold for operators, the distributive prop-
erty does:

   1 2 1 2
ˆ ˆ ˆ ˆO O O O  , (4.6)

and

   1 2 1 2
ˆ ˆ ˆO O O  . (4.7)

It is also customary to refer to powers of operators:

   2ˆ ˆ ˆO OO . (4.8)

A function of an operator is defi ned in terms of its power series representation. Thus, 
for example,

   
ˆ

0

1 ˆ
!

O n

n

e O
n

. (4.9)    

   4.1.1    The Polarization Rotation Operator   

 Imagine we’ve got a photon propagating in the  z -direction, and its wave vector is 
  zkk u  . This photon is linearly polarized in state   H  , and we want to rotate its polari-
zation so that it ends up in state   45  , as shown in  fi g.  4.1  .    

 The operator   ˆ , zR u   denotes a right-handed rotation through an angle of     about 
the axis   zu  . At the moment we’re interested in polarization rotation, and we’ll always 
be rotating about the propagation direction, so we’ll take the   zu   to be implied. Thus, 
we’ll use   ˆ pR   to denote the polarization rotation operator, with the subscript  p  mak-
ing this explicit. From  fi g.  4.1   we’d expect that
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   oˆ 45 45pR H  , (4.10)

which is correct.     

   4.2    THE ADJOINT OPERATOR   

 Given that   oˆ 45 45pR H  , is the following true:

   
?

oˆ 45 45pH R  ? (4.11)

To check, imagine that we apply the rotation operator   oˆ 45pR   twice to the state   H  . 

From  fi g.  4.1   we see that the fi rst rotation by   o45   yields   45  , and we’d expect that the 
second would yield   V  , which is true:

   o o oˆ ˆ ˆ45 45 45 45p p pR R H R V  . (4.12)

From this we see that

   

o o o oˆ ˆ ˆ ˆ45 45 45 45

0.

p p p pH R R H H R R H

H V   (4.13)

However, if eq. (4.11) were correct, we would fi nd

   

o o o o

?

ˆ ˆ ˆ ˆ45 45 45 45

45 45
1.

p p p pH R R H H R R H

  (4.14)

  

y

k
H

x

z

+45

    

  Fig 4.1     Rotation of state   ⎪ 〉H   into state   ⎪ 〉+45  .   
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This disagrees with eq. (4.13), so it’s wrong, and the conjecture we made in eq. (4.11) 
is as well:

   oˆ 45 45pH R  . (4.15)

In order to get an equivalent result when operating on a bra vector, we need to use the 
adjoint operator (denoted with a †)

   † oˆ 45 45pH R  . (4.16)

We pronounce   †ˆ
pR   as “  ˆ pR  -dagger.” With this defi nition we have

   

† o o † o oˆ ˆ ˆ ˆ45 45 45 45

45 45
1.

p p p pH R R H H R R H

  (4.17) 

 Any operator, regular or adjoint, can operate on either a bra or a ket (i.e., to the right 
or to the left). However, if we know that   1 2Ô  , then we immediately know that 

  †
1 2Ô  , but we don’t necessarily know what   1 Ô  or   †

1Ô   are. 

 The adjoint of a product is 

   
† † †

1 2 2 1
ˆ ˆ ˆ ˆO O O O  . (4.18)

Note that the ordering gets reversed.   

   4.2.1    Unitary Operators   

 Look again at eq. (4.17); grouping things differently, we fi nd that

   

† o o † o oˆ ˆ ˆ ˆ45 45 45 45

1.

p p p pH R R H H R R H

H   (4.19)

Here we have used the result of eq. (4.17) to set the last line equal to 1. In order to have 
  1H  , it must be the case that   H  . So

   † o oˆ ˆ45 45p pR R H H  , (4.20)

and

   † o o ˆˆ ˆ45 45 1p pR R  . (4.21)
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Here   ̂1  is the identity operator, which has no effect on any state. There’s nothing special 
about   o45   here, in general

   † ˆˆ ˆ 1p pR R  . (4.22) 

 The rotation operator is a unitary operator. Unitary operators are somewhat special, 
and they are typically denoted by   Û  . The defi nition of a unitary operator is that

   † † ˆˆ ˆ ˆ ˆ 1U U UU  . (4.23)

Unitary operators preserve the normalization of a state, which means that

   1 2
ˆ iU e  .  (4.24)

A unitary operator changes the state, but the complex constant is always of magnitude 1. 
 The inverse of   Ô  is denoted by   1Ô  , and is defi ned by

   1 1ˆ ˆ ˆ ˆ 1̂O O OO  . (4.25)

For unitary operators   1 †ˆ ˆU U  , but in general the inverse and the adjoint are not the 
same. 

 It should be fairly obvious that if we rotate fi rst by   o45  , and then by   o45   about the 
same axis, we have to end up back where we started. This means

   o oˆ ˆ45 45p pR R H H  . (4.26)

Comparing this to eq. (4.20), we learn that   † o oˆ ˆ45 45p pR R  ; more generally

   † 1ˆ ˆ ˆ
p p pR R R  . (4.27)

The adjoint of the rotation operator turns out to be equivalent to rotating in the opposite 
direction.     

   4.3    THE PROJECTION OPERATOR   

 A PA HV  and a beam block can be used to prepare photons in state   H  . The PA HV  trans-
forms the state     into the state   H   with a certain probability, and this transformation 
can be described by an operator. With   H Vc H c V  , it is useful to defi ne this 
operator such that

   ˆH HP c H  , (4.28)

and the output state is weighted by its probability amplitude. The operator   ˆHP   is called 
the projection operator onto   H  , because it projects any state onto   H  . 

 Looking more carefully at eq. (4.28), we see that
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ˆ

,

H H

H

P c H

H c

H H

H H

  (4.29)

or   ˆHP H H  . In general, the projection operator onto an arbitrary state     is given 
by

   P̂  . (4.30)

This equation does  not  represent an inner product. An inner product of the form   1 2   
is a complex number, while eq. (4.30) represents an outer product, which is an operator. 

 In the  HV -basis we can write an arbitrary state     as

   

ˆ ˆ .

H V

H V

H V

c H c V

H c V c

H H V V

H H V V

P P

  (4.31)

Since     is arbitrary, it must be true that

   ˆˆ ˆ 1H VP P  . (4.32)

The sum of the projection operators onto the basis states is equal to the identity operator. 
This is true in general, not just for   ˆHP   and   V̂P  ; if the states   j   form an orthonormal 
basis, then

   ̂ ˆ1 j jj
j j

P  . (4.33)

Indeed, showing that this relationship holds is one way to prove that the states   j   
form a complete, orthonormal basis.    

   4.4    THE MATRIX REPRESENTATION OF OPERATORS   

 When expressing states as column vectors, it is necessary to “order” the basis states, 
as we learned in sec. 3.6. Equation (4.33) suggests that it is also occasionally useful to 
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label them by integers. With this in mind, let’s order and label our horizontal and verti-
cal basis vectors as

   1H HV , 2V HV  , (4.34)

which is consistent with the ordering of the basis states we’ve used previously. In this 
notation a general state is expressed as

   
1 1 2 2

,j j
j

HV HV

HV
  (4.35)

where

   j jHV  . (4.36)

Using these basis states, the column vector notation for a state is

   1 1

2 2 HVHV

HV
HV

 , (4.37)

and eq. (4.33) tells us that the identity operator may be expressed as

   ̂1 j j
j

HV HV  . (4.38)

There’s no new physics here, not even any new math; it’s just new notation.   

   4.4.1    Matrices   

 The operator   Ô  acts on the state    , and produces a new state    :

   Ô  . (4.39)

We know the column vector representation of     [eq. (4.37)], and we want to determine 
the column vector representation of    :

   1

2 HV

 . (4.40)

We know that

   ˆ ˆ1̂i i i iHV HV O HV O  . (4.41)

If we express the identity using eq. (4.38), then
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ˆ

ˆ

ˆ .

i i j j
j

i j j
j

i j j
j

HV O HV HV

HV O HV HV

HV O HV

  (4.42)

We defi ne

   ˆ
ij i jO HV O HV  , (4.43)

where, in general, the values of   ijO   are complex. We can then write

   i ij j
j

O  . (4.44)

Compare this equation to eq. (1.41), and you’ll see that it is equivalent to a matrix mul-
tiplying a column vector. Specifi cally, it represents

   1 11 12 1

2 21 22 2HV HV HV

O O
O O

 . (4.45)

The   ijO  ’s are called the matrix elements of   Ô , for reasons that should now be obvious. 
 Equation (4.45) is expressed in the  HV -basis, but it is true in any basis, as long as the 

vectors and the matrix are all expressed in the  same  basis; more on this in the next sec-
tion. We say that the matrix elements   ijO  , eq. (4.43), form the matrix representation of 
the operator   Ô  in the  HV -basis. 

 EXAMPLE 4.1 
 Find the matrix representation of the projection operator   ˆHP   in the  HV -basis. 

 By defi nition this is

   1 1 1 2

2 1 2 2

ˆ ˆ
ˆ

ˆ ˆ
H H

H
H H HV

HV P HV HV P HV
P

HV P HV HV P HV
,  (4.46)

which we can also write as

   
ˆ ˆ

ˆ
ˆ ˆ

H H
H

H H HV

H P H H P V
P

V P H V P V
 . (4.47)

We know that   ˆHP H H   and   ˆ 0HP V  , so
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0 1 0ˆ
0 0 0H

HVHV

H H
P

V H
  . (4.48) 

 As can be seen from this example, the key to writing the matrix representation of an 
operator is knowing how the operator operates on each of the basis states. These opera-
tions essentially defi ne the operator, and knowing them makes determining the matrix 
elements straightforward. Here’s another example. 

 EXAMPLE 4.2 
 Find the matrix representation of the polarization rotation operator   ˆ pR  . 

 We need to know what this operator does to each of our basis states. Consider rotat-
ing a horizontally polarized photon by the angle    , as shown in  fi g.  4.2  (a). We see that 
the resulting state is

   1
ˆ ˆ cos sinp pR HV R H H V  . (4.49)

Rotation of a vertically polarized photon, shown in  fi g.  4.2  (b), yields

   2
ˆ ˆ sin cosp pR HV R V H V  . (4.50)

The matrix representation of the operator is thus

   

1 1 1 2

2 1 2 2

ˆ ˆ
ˆ

ˆ ˆ

cos sin sin cos

cos sin sin cos

cos sin
.

sin cos

p p
p

p p HV

HV

HV

HV R HV HV R HV
R

HV R HV HV R HV

H H V H H V

V H V V H V

      (4.51) 

  

sin 

H

V

cos 

(a)

-sin 

H

V

cos 

(b)

    

  Fig 4.2     Rotating (a) horizontal polarization, and (b) vertical polarization by an angle     
about the zu  axis, which points out of the page.   
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 Once we’ve determined the matrix representation of an operator, we can use it to 
determine how the operator will modify a particular state. 

 EXAMPLE 4.3 

 Determine   ˆ 45HP  . 
 One way to do this is to use the outer product representation of   ˆHP  :

   

1ˆ 45
2

1 ,
2

HP H H H V

H

  (4.52)

where we’ve used  table  3.2  . We could also use the matrix representation of   ˆHP   
[eq. (4.48)]:

   

1 0 11ˆ 45
0 0 12

11
02

1 .
2

H
HV HV

HV

P

H

   (4.53) 

 Whether you use operators and states, or matrices and vectors, to do calculations like 
this is up to you. In the end, though, it is usually best to express your answer in terms 
of state vectors.    

   4.4.2    Correspondence Between Quantum 
and Classical Matrices   

 In sec. 4.3 we found that the physical implementation of the projection operator   ˆHP   
was a horizontal polarizer. Furthermore, the matrix for   ˆHP  , eq. (4.48), is the same as 
the Jones matrix for a horizontal polarizer listed in  table  2.2  . Each of the optical ele-
ments listed in  table  2.2   will change the polarization state of an input photon, therefore 
each of these elements has a corresponding quantum mechanical operator. The matrix 
representation of the quantum operator, in the  HV -basis, is exactly the same as the cor-
responding Jones matrix. This further validates the treatment of the polarization of a 
single photon presented in  chapter  3  . 

 There is no Jones matrix listed in  table  2.2   that corresponds to the rotation operator 
  ˆ pR   of eq. (4.51). Didn’t we say in  chapter  2   that a half-wave plate rotates linear 
polarization? Why isn’t the half-wave plate the physical implementation of the rotation 
operator? The answer is that if we apply the rotation operator   ˆ pR   to    , the state of 
linear polarization along the angle    , then we must get
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   ˆ pR  , (4.54)

 independent  of the input angle    . In the problems you will verify that   ˆ pR  , as ex-
pressed in eq. (4.51), does indeed do this. However, this is  not  what a half-wave plate 
does. A half-wave plate at a fi xed angle rotates different input polarizations by different 
amounts. Consider, for example, a half-wave plate whose fast axis is at 45°. A hori-
zontally polarized input photon will be rotated to vertical polarization, while a photon 
polarized along 45° will not be rotated at all. 

 There are optical materials, however, that are the physical embodiment of the rota-
tion operator   ˆ pR  ; they rotate all input linear polarizations by the same amount. Such 
materials are said to exhibit optical activity. Optically active materials include quartz 
crystals and some sugar solutions (e.g., Karo ®  syrup) [4.1]. 

 All this may make it seem like there is no difference between the quantum and clas-
sical descriptions of polarization; however, this is not the case. One difference is that 
when speaking of single photons, we can only talk about the probabilities of measure-
ments, not intensities. Furthermore, a key caveat to the discussion so far is that we have 
been talking about individual photons. As we will learn in  chapter  8  , the quantum 
mechanical behavior of  two  photons, whose polarizations are correlated with each 
other, can be  very  different than we would expect from classical physics. In situations 
like these quantum mechanics gets especially interesting.     

   4.5    CHANGING BASES   

 We have mainly been discussing the  HV -basis. However, it is occasionally useful to 
re-express things in a different basis (the basis of   45   and   45  , for example). To do 
this, we need to know how to transform the representations of states and operators from 
one basis to another. There is a formal mathematical way to do this, called a similarity 
transformation, that is described in complement 4.A. Here we’ll describe a less formal 
way to accomplish this transformation. 

 Start with the state    , which is known in the  HV -basis:

   H VH V  . (4.55)

We want to transform     to the  + 45-basis. In other words, we need to fi nd the coef-
fi cients in the expansion

   45 4545 45  . (4.56)

To do this we need another piece of information; we need to know the relationships 
between the sets of basis vectors. In this case, we can fi nd the needed relationships in 
 table  3.2  :

   

145 ,
2

145 .
2

H V

H V
  (4.57) 
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 Now it is useful to go back to fi rst principles. The coeffi cients in eq. (4.56) are given 
by   45 45   and   45 45  ; these are essentially the defi nitions of the 
coeffi cients. Substituting in the known state from eq. (4.55) yields

   45

45

45 45 45 ,

45 45 45 .

H V H V

H V H V

H V H V

H V H V
  (4.58)

Switching the kets in eq. (4.57) to bras, and using the inner product, we fi nd

   

1 145 , 45 ,
2 2

1 145 , 45 .
2 2

H V

H V
  (4.59)

Substituting these into eq. (4.58) yields the coeffi cients we want, in terms of the coef-
fi cients we know

   
45

45

1 ,
2

1 .
2

H V

H V

  (4.60) 

 A different way to attack this problem would be to once again start with the defi ni-
tion   45 45  , but to then use the identity operator to write

   45
ˆ45 1  . (4.61)

The key now is expressing the identity operator in a useful way. Equation (4.61) al-
ready has a   45   in it, so we need some information from the  HV -basis. Let’s get it 
by expressing   ̂1  as the sum of the projection operators onto the  HV -basis [eq. (4.32)]:

   

45
ˆ45 1

45

45 45

45 45
1 .
2

H V

H V

H H V V

H H V V

H V

 . (4.62)

This agrees with eq. (4.60). Once again we’ve used eq. (4.59), which originally came 
from the relationship between the basis states, eq. (4.57).   45  can be found in a similar 
manner. 

 We don’t need to know anything  new  to change bases. We don’t need to memorize 
any new formulas, we just need to apply what we’ve already learned. All we need is the 
defi nition of the coeffi cients (e.g.,   45 45  , etc.) and the relationship between 
the basis vectors [e.g., eq. (4.57) and/or eq. (4.59)]. It’s also occasionally useful to use 
the fact that the identity operator   ̂1  can be written as the sum of the projection operators 
onto the basis vectors. 
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 EXAMPLE 4.4 
 Write the state   L   in the  + 45-basis. 

 The representation we’re looking for is

   45 4545 45L c c  , (4.63)

where

   45 4545 45c L c L  . (4.64)

We know how the  + 45-basis relates to the  HV -basis [eq. (4.59)], and from  table  3.2   we 
know that

   
1
2

L H i V  , (4.65)

or

   1
2

H L  ,  1
2

V L i . (4.66)

Starting from eq. (4.64),   45c   can be found by using the identity operator:

   

45
ˆ45 1

45

45 45

1 1 1 1
2 2 2 2

1 1 .
2

c L

H H V V L

H H L V V L

i

i

  (4.67)

In a similar fashion, we fi nd that   45
1 1
2

c i  . Equation (4.63) thus becomes

   

/ 4 / 4

/ 4 / 2

/ 4

1 11 45 1 45
2 2
1 45 45
2

1 45 45
2

1 45 45 .
2

i i

i i

i

L i i

e e

e e

e i

   (4.68) 

 Using the same ideas, we can also change the matrix representation of an operator from 
one basis set to another. 
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 EXAMPLE 4.5 

 Transform   ˆHP   from the  HV -basis to the  + 45-basis. 
   ˆHP   is given in the  HV -basis in eq. (4.48). To write   ˆHP   in the  + 45-basis, we fi rst need 

to order the basis vectors. Use the ordering   145 45   and   245 45  , and then

   

1 1 1 2

2 1 2 2 45

45

ˆ ˆ45 45 45 45ˆ
ˆ ˆ45 45 45 45

ˆ ˆ45 45 45 45
.ˆ ˆ45 45 45 45

H H
H

H H

H H

H H

P P
P

P P

P P

P P

  (4.69)

Using eq. (4.57), we can write

  

1 1ˆ ˆ45 45
2 2

1 ˆ ˆ ˆ ˆ .
2

H H

H H H H

P H V P H V

H P H H P V V P H V P V
  (4.70)

We’ve written the matrix element in our new basis in terms of matrix elements of the 
original basis [eq. (4.48)]. We now use the known matrix elements, and obtain 

   1 1ˆ45 45 1 0 0 0 .
2 2HP   (4.71)

The other three matrix elements in eq. (4.69) can be found in a similar manner, yielding

   
45

1 11ˆ
1 12HP . (4.72)   

 Does this result make sense? In the next example we’ll apply it to fi nd out. 

 EXAMPLE 4.6 

 Calculate   ˆ 45HP  , using eq, (4.72). 

    

45 45

45

1 1 11ˆ 45
1 1 02

11
12

1 45 45 .
2

HP

  (4.73)
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Using eq. (4.57), this is can be rewritten as

   

1 1 1ˆ 45
2 2 2
1 ,
2

HP H V H V

H
  (4.74)

which is in agreement with eq. (4.52).  

 The technique for changing bases we’ve discussed in this section has some advan-
tages, and some disadvantages. The advantage is that there are no new formulas to 
memorize, and we’re assured of getting the right answer by applying fundamental rela-
tionships. The disadvantage is that, in some sense, we’re reinventing the wheel for each 
problem, and the calculations can be tedious. The technique for changing bases 
described in complement 4.A is different. It presents a formal method, so we don’t need 
to reinvent the wheel. However, it does require remembering how to construct certain 
matrices that do the basis transformation, as well as remembering the proper ordering 
used in applying these matrices.    

   4.6    HERMITIAN OPERATORS   

 Recall that if   ˆ 'O  , then   †ˆ 'O  . Therefore, the matrix elements   †
ijO   of the 

adjoint operator   †Ô  , can be written in terms of the matrix elements of the operator   Ô  as

   

† †

*

*

ˆ

'

'

ˆ

.

ij i j

i j

j i

j i

ji

O O

O

O

  (4.75) 

 There are certain special operators that are self-adjoint, in other words   †ˆ ˆO O  and 
  †

ij ijO O  . Such operators are called Hermitian operators. From eq. (4.75), it can be seen 
that the matrix elements of a Hermitian operator satisfy   ij jiO O  . 

 In  chapter  1   we talked about the eigenvalues     and eigenvectors   x  of the matrix   M , 
which are the solutions to the equation   x xM  . Since operators can be represented as 
matrices, it will probably not surprise you that operators have eigenvalues and eigenvec-
tors (or eigenstates). The eigenvalues and eigenstates of   Ô  are the solutions to the equation

   ˆ i i iO  . (4.76)
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In quantum mechanics it is customary to label the eigenstate and its corresponding 
eigenvalue by the same symbol, in this case   i . In an  N -dimensional space an opera-
tor has  N  eigenvalues, so   1, 2, ,i N . One way to fi nd the eigenvalues and eigen-
states is to express the operator as a matrix, and then use the techniques described 
in sec. 1.2. 

 Hermitian operators have some interesting properties. The eigenvalues correspond-
ing to Hermitian operators are always real, not complex, and the eigenstates are orthog-
onal to each other; you’ll prove these properties in the problems. Furthermore, the 
eigenstates of a Hermitian operator in a fi nite-dimensional Hilbert space form a com-
plete set.   1    Since these eigenstates can always be normalized, they form an orthonormal 
basis that can be used to express any vector in the Hilbert space. 

 The fact that the eigenstates of a Hermitian operator form an orthonormal basis also 
means that

   ̂1 i i
i

 . (4.77)

We can use this to write

   

ˆ ˆ1̂

ˆ

.

i i
i

i i i
i

O O

O   (4.78)

This is frequently a useful way to express a Hermitian operator. 
 As we’ll see in the next chapter, Hermitian operators play a special role in quantum 

mechanics.      
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   1.     In an infi nite-dimensional Hilbert space, the eigenstates may or may not form a complete set [4.2]. 
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         4.8  PROBLEMS    

           4.1*     Prove that a unitary operator does not change the magnitude of a state vector.  
      4.2     Show that   2ˆ ˆP P  .  

      4.3     If    H Vc H c V  , what is   ˆ
HP  ?  

      4.4     Using the matrix representation of the polarization rotation operator   ˆ pR  , 
verify that it is unitary.  

      4.5     Using the matrix representation of the polarization rotation operator   ˆ pR  , 
verify that   †ˆ ˆ

p pR R  .  

      4.6*     Using the matrix representation of the polarization rotation operator   ˆ pR  , 
verify that   ˆ pR  , where     is the state of a photon linearly polar-
ized along an angle     from the horizontal.  

      4.7     Determine the column vectors representing the states   H   and   V   using the 
states   L   and   R   as a basis.  

      4.8     Verify that the vectors you found in problem 4.7 are orthogonal.  
      4.9     Determine the column vector representing the elliptically polarized state 

  cos sinie H e V  , using the states   45   and   45   as a basis.  

      4.10     Work out the matrix representations of the projection operators   ˆHP H H   

and   V̂P V V   using the states   L   and   R   as a basis. Check that the relation-

ships   2ˆ ˆ
H HP P  ,   2ˆ ˆ

V VP P   and   ˆ ˆ ˆ ˆ 0H V V HP P P P   are satisfi ed using these matrix 
representations. 

     4.11     Express   ˆ pR   in the  + 45-basis.  

      4.12     Using the result of problem 4.11, verify that   oˆ 45 45pR V  .  

      4.13     Express   ˆ pR   in the circular polarization basis.  

      4.14*     Find the eigenvalues and eigenstates of   45
ˆ 45 45P  . Physically, do these 

make sense?  
      4.15     Find the eigenvalues and eigenstates of   ˆ pR  .  

      4.16*     Prove that the eigenvalues of a Hermitian operator are real. 

     4.17     Prove that if   1 2Â a a  , then   †
2 1Â a a  . 

     4.18*     Prove that for a Hermitian operator, eigenstates corresponding to nondegener-
ate (distinct, not equal) eigenvalues are orthogonal. Hint: Look at the matrix 
 elements   1 2Ô   corresponding to distinct eigenstates. (You won’t prove it 
in this problem, but eigenstates corresponding to degenerate [equal] eigenval-
ues can be constructed so that they are orthogonal.) 
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     4.19*     Compute   Ôe  , assuming     is an eigenstate of   Ô . 

     4.20*     Prove that for a Hermitian operator   Ô , it is possible to express a function of   Ô , 
  ˆf O  , as

   ˆ .i i i
i

f O f   (4.79)

  Here the   i ’s are the eigenvalues of   Ô , and the   i  ’s are the corresponding 
eigenstates.   



             COMPLEMENT 4.A      

  Similarity Transformations   

 Here we’ll describe a more formal method of changing the representations of vectors 
and matrices from one basis to another.   

   4.A.1    Changing the Representation of Vectors   

 Suppose we know the representation of the state     in the basis consisting of the 
orthonormal states   jo  :

   
1

N
o
j j

j

o  . (4.A.1)

The   jo  ’s form what we will refer to as the original basis, or the  o -basis. We’ll use the 
vector   o  to refer to the column vector that represents     in the  o -basis:

   

1
o

o

o
N o

 . (4.A.2)

We want to know the representation of the state     in a new orthonormal basis, con-
sisting of the states   in  : 

  
1

N
n
i i

i

n  . (4.A.3)



 84   •  Q U A N T U M  M E C H A N I C S

The   n
i  ’s are the elements of the column vector   n .   2    

 We fi nd the coeffi cients   n
i   using

   
1

1

1

.

n
i i

N
o

i j j
j

N
o

i j j
j

N
o

ij j
j

n

n o

n o

S

  (4.A.4)

Here we’ve defi ned

   ij i jS n o   , (4.A.5)

which are the matrix elements of   S  . Comparing eq. (4.A.4) to eq. (1.41), we see that 
eq. (4.A.4) is equivalent to the multiplication of a matrix and a column vector. Specifi -
cally, eq. (4.A.4) is equivalent to

   n oS  . (4.A.6) 

 Thus, to change from   o , which is the representation of     in the  o -basis, to the 
representation of     in the  n -basis,   n , we use eq. (4.A.6). In sec. 4.5 we said that in 
order to change bases it was necessary to have information about the relationships 
between the sets of basis vectors; in this method of changing bases, this information is 
contained in   S  . 

 The inverse transformation, from the  n -basis to the  o -basis, is   1o nS  . How-
ever, the matrix   S   is unitary, as you’ll prove in the problems, so   1 †S S  . Thus, the 
inverse transformation is usually written as

   †o nS  . (4.A.7)

The adjoint matrix is most easily determined by remembering that its matrix elements 
are related to those of the original matrix by   † *

ij jiS S   [eq. (4.75)]. 

    2.     We need to refer to the vectors   o   and   n   separately, because they are basis-dependent representa-
tions of the basis-independent state    . Because the superscripts specify the basis, we can use = instead of 
      for these vectors. 
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 EXAMPLE 4.A.1 
 Write the state   L   in the  + 45-basis. 

 From  table  3.2  , we know   L   as a column vector in the  HV -basis:

   
11

2
HV

HVi
L  . (4.A.8)

The matrix that takes us from the  HV -basis to the  + 45-basis has elements

   45ij i jS HV  , (4.A.9)

using the notation in secs. 4.4 and 4.5. Thus,

   

1 1 1 2

2 1 2 2 45

45

45 45
45 45

45 45
.

45 45

HV

HV

HV HV
HV HV

H V
H V

S

  (4.A.10)

We’ve written the subscript   45HV   on this matrix because it’s not really written in 
either basis, it’s used to take us from one basis to another. The matrix elements can be 
obtained from eq. (4.59), yielding

   
45

1 11
1 12 HV

S  . (4.A.11)

Using this, we fi nd

   

45

45

45

1 1 11 1
1 12 2

11 ,
12

HV

HV HVi

i
i

L SL

  (4.A.12)

or

   
1 11 45 1 45
2 2

L i i  . (4.A.13)

This agrees with eq. (4.68).     
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   4.A.2    Changing the Representation of Matrices   

 Consider   oM  , which is expressed in the original basis. It performs the transformation

   o o oM  . (4.A.14)

Transforming   o  to   n , we see that:

   †

†

,

n o

o o

o n

o n

n n

S

S M

SM S

SM S

M

  (4.A.15)

where we’ve used eqs. (4.A.6) and (4.A.7). Evidently, matrices are transformed from 
one basis to another using

   †n oM SM S  . (4.A.16)

This represents a similarity transformation.   3    

 EXAMPLE 4.A.2 
 Transform the matrix representation of   ˆHP   from the  HV -basis to the  + 45-basis. 

 The  HV -basis representation of   ˆHP   is given in eq. (4.48). Using   S   from eq. (4.A.11), 

and the fact that   † *
ij jiS S  , we fi nd

   

45 †

45 45

45

45

1 1 1 0 1 11 1
1 1 0 0 1 12 2

1 1 1 11
1 1 0 02

1 11 .
1 12

HV
H H

HV HV HV

HV

P SP S

  (4.A.17)

This is in agreement with eq. (4.72).     

    3.     Since  S    is unitary, it is more properly a unitary similarity transformation.  
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    4.A.3    Problems   

           4.A.1*     Prove that   S   is unitary.  
      4.A.2     Transform the column vectors representing the states   H   and   V   from the  HV -

basis to the circular polarization basis.  
      4.A.3     Transform the column vector representing the elliptical polarization state 

  cos sinie H e V   from the  HV -basis to the  + 45-basis.  
      4.A.4     Transform the matrix representing   ˆ pR   from the  HV -basis to the  + 45-basis.   
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         CHAPTER 5 

Measurement  

   1.     Much more common is a destructive photon measurement, in which the photon is absorbed by the 
detector. 

    In classical physics there is usually little confusion about how we make the correspond-
ence between the mathematical formalism we use to describe physical systems, and 
the measurements we make on those systems. For example, Newton’s Second Law 
says that   mF a . Here,   F  is the mathematical representation of the force; it can be 
measured, at least in principle, using something like a spring scale. However, at this 
point it’s probably not obvious to you how to relate the results of a physical measure-
ment to the quantum state—things are not as clear-cut in quantum mechanics as they 
are in classical mechanics. The purpose of this chapter is to describe how we make 
correspondences between the mathematical formalism that is quantum mechanics, and 
the results of specifi c measurements. 

      5.1    MEASURING POLARIZATION   

 Suppose we have a photon prepared in state    , and we’d like to learn something about 
its polarization. To do this we might employ a measurement apparatus like that shown 
in  fi g.  5.1  , where the photon passes through a horizontal/vertical polarization analyzer 
PA HV  , and then through one of two detectors. The detectors pictured in  fi g.  5.1   are of a 
special type, which we’ll refer to as nondestructive detectors. We can think of them as 
being made of a transparent material, like glass, that transmits a photon without changing 
its polarization, yet it still produces a signal when a photon passes through. A nondestruc-
tive measurement of a photon is extremely diffi cult, but in principle possible to perform.   1       

 Note that the PA HV  by itself is not suffi cient to perform a useful measurement. We, being 
macroscopic classical objects, want to obtain information from a single photon, which is a 
microscopic quantum-mechanical object. We desire to know whether the photon emerged 
from the  V -port or the  H -port of the PA HV . That information must be “amplifi ed” from 
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    2.     Many physicists believe that irreversibility plays an important role in what we refer to as a quantum 
measurement [5.1]. 

microscopic to macroscopic. This amplifi cation is irreversible; we can’t perfectly regener-
ate the input state by running things backward.   2    We use the term “meter” to describe an 
apparatus that forms such a bridge from the microscopic to the macroscopic. In  fi g.  5.1  , the 
meters that are performing the actual measurement are the two detectors. 

 The measurement described in  fi g.  5.1   has two possible outcomes: The photon is 
observed to be either horizontally polarized, or vertically polarized. In order for us to 
compute the statistics of the results of many such measurements, it is convenient to 
assign a numerical value to each of the possible measurement outcomes. We’ll assign a 
value of   1  to a measurement that yields a horizontally polarized photon, and   1  to a 
measurement that yields a vertically polarized photon. 

 If we perform many measurements, when the input state is   H  , the result is a series 
of 1  s, which average to 1. Likewise, if the input state is   V  , the result is a series 
of   1 s, and the average is   1 . A general input state is a linear combination of horizontal 
and vertical,   H Vc H c V  . The measurement results are random for this state, 
and the probabilities of obtaining +1 or –1 are

  
2 2

2 2

1 ,

1 .

H

V

P P H H c

P P V V c
  (5.1)

The notation here emphasizes that the probabilities are conditioned on the input state 
(see sec. 1.1.4). 

 Since we know the probability of obtaining a particular measurement, we can obtain 
the average of the measurements by weighting the possible values by their correspond-
ing probabilities and summing, as in eq. (1.16). Using eq. (5.1), we fi nd

  
22

average polarization 1 1 1 1

.H V

P P

c c
  (5.2)

Remember that this average was computed for a measurement performed with a PA HV . 
Using an apparatus that measures circular polarization (a PA C ), for example, would 
yield a different answer.   

  PAHV

–1

+1
H

V

   

  Fig 5.1     Performing a polarization measurement using nondestructive photon detectors. 
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   5.1.1    The Polarization Operator   

 Let’s defi ne what we will refer to as the  HV -polarization operator,   ˆ HV  . One way to 
defi ne an operator is by its action on a complete set of basis states. In this way   ˆ HV   
can be defi ned by

  ˆ 1HV H H , ˆ 1HV V V  . (5.3)

Each of the basis states is an eigenstate of   ˆ HV  ;   H   corresponds to eigenvalue +1, and 
  V   corresponds to eigenvalue –1. In a 2-D Hilbert space, operators have two eigenval-
ues and eigenstates, so these are all of the eigenvalues and eigenstates of   ˆ HV  . Another 
way to express   ˆ HV   is as [eq. (4.78)]:

  ˆ 1 1HV H H V V  . (5.4) 

 The operator   ˆ HV   is Hermitian:   †ˆ ˆ HVHV  . The facts that: (i) its eigenvalues are 
real, (ii) its eigenstates are orthogonal, and (iii) its eigenstates form a basis, are all con-
sistent with   ˆ HV   being Hermitian.     

   5.2    THE POSTULATES OF QUANTUM MECHANICS   

 Not all textbooks agree on the number of postulates that there are in quantum mechan-
ics, or on their ordering. Some books don’t enumerate postulates at all; they simply 
lump them all together and refer to them as the statistical interpretation of quantum 
mechanics. However, I want to be clear that the connections we make between math-
ematics and experiments are based on postulates. Fortunately, these postulates have 
served us well for many years, and are all the stronger for it.   

   5.2.1    Postulate I—States   

    Postulate I—At any instant in time, the state of a physical system is specifi ed by 
a ket vector,     . 

   It is common to say that the system is “in” state    . This is essentially an assump-
tion we’ve been making all along, and we’ve just codifi ed it as a postulate. Different 
people think about the state in different ways. I fi nd it useful to think about quantum 
states in terms of information. The state contains all of the knowable information about 
a quantum system. If we know the state of a system, we know the probabilities for all 
possible outcomes, of all possible measurements, that we could perform on that system. 
Notice that we said that we’d know “the probabilities for all possible outcomes,” not 
the outcomes themselves. In quantum mechanics there are very few cases where the 
outcome is known beforehand—all measurements are probabilistic. The best that quan-
tum mechanics can do is predict the probabilities of measurement results, and this 
information is contained in the state. 
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 We need to add one caveat to Postulate I: not  all  quantum states can be described 
by ket vectors    . So far we’ve specialized to the case of pure states, and all pure 
states are described by ket vectors. However, in later chapters we’ll learn that quantum 
mechanics also allows for mixed states, which cannot be represented by kets. At that 
point we will need to generalize our notion of the quantum state, but the fact that there 
exists a state that contains all information about a quantum system remains valid.    

   5.2.2    Postulate II—Observables   

    Postulate II—Physically measurable quantities are represented by observables 
(e.g., O). Every observable has a corresponding Hermitian operator (   Ô  ) . 

   As an example we’ve used before, polarization is an observable—it is possible to 
measure it. The  HV -polarization observable is   HV  , and its corresponding Hermitian 
operator is   ˆ HV  . Other observables include energy, position, momentum, etc., and they 
all have their own corresponding Hermitian operators. 

 A more mathematical defi nition of an observable in quantum mechanics is a Hermi-
tian operator whose eigenstates form a complete basis set [5.2]. Since the eigenstates of 
a fi nite-dimensional Hermitian operator always form a complete basis, by this defi ni-
tion all fi nite-dimensional Hermitian operators correspond to observables. Given this 
defi nition, some physicists don’t bother to distinguish between the observable and the 
operator. However, I believe it is useful to make a distinction between the physically 
observed quantity, and its corresponding Hermitian operator.    

   5.2.3    Postulate III—Eigenvalues and Eigenstates   

 This postulate has two parts. The fi rst is: 

  Postulate III(a)—If an observable O, with corresponding Hermitian operator    Ô ,  is 
measured, the possible results of the measurement are given by the eigenvalues of    Ô . 

   When we measure polarization using the apparatus in  fi g.  5.1  , the possible outcomes 
are +1 for horizontal, and –1 for vertical, which are the eigenvalues of   ˆ HV  . We never 
obtain a measurement value of 0, even though the  average  polarization may be 0 (see 
example 5.2, below). Quantum mechanics gets its name from the fact that it allows for 
only discrete measurement values of certain quantities, in situations where classical 
mechanics allows continuous values. In these situations the corresponding Hermitian 
operator has a discrete eigenvalue spectrum, and these discrete eigenvalues represent 
the allowed outcomes of measurements. 

 It is this postulate that requires us to associate a Hermitian operator with an observ-
able in postulate II. A measurement returns a real number, not a complex number.   3    

    3.     You might imagine determining a complex value by measuring  two  observables, corresponding to the 
real and imaginary parts. A single observable cannot take on complex values. 
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In order to postulate that measurements are given by eigenvalues, while still guarantee-
ing that they are real, we must associate observables with Hermitian operators, because 
only these operators are guaranteed to have real eigenvalues. 

    Postulate III(b)—For a measurement of O, with corresponding Hermitian opera-
tor    Ô ,  on a system prepared in state    ,  the probability of obtaining the eigen-

value       as a measurement result is    
2

P  ,  where       is the eigenstate 
corresponding to     .  After a measurement returning the value     ,  the system is left 
in state     . 

   We have already discussed the fi rst part of this postulate, regarding the probability 
of a measurement result, in detail. I’d like to stress, however, that the probability refers 
to  measuring the value     , not  being in state      prior to the measurement—as stated in 
the postulate, prior to measurement the system was in state    . The probability postu-
late is called Born’s rule, after Max Born. 

 The second part of postulate III(b), about the state of the system after the measure-
ment, is new. It says that the act of measurement may  change  the state of the system; 
before the measurement the system is in state    , and after the measurement the sys-
tem is in state    . This is sometimes referred to as the von Neumann projection postu-
late, after John von Neumann, who is credited with introducing it. 

 Suppose that the   1  detector in  fi g.  5.1   fi res, indicating that the photon is horizontally 
polarized. Postulate III says that when leaving the measurement apparatus, the photon is 
in state   H  . To verify this, we must perform a second polarization measurement, as shown 
in  fi g.  5.2  . If the photon leaves the fi rst measurement apparatus in state   H  , the second 

measurement will yield   1  with probability   
2

1 1P H P H H H H  . 
This is indeed what we would fi nd.    

 This result shouldn’t surprise you for polarization measurements, but postulate 
III applies to  any  quantum measurement, with occasionally surprising results. To 
summarize: After a measurement returning the result    , the system is left in the 

  

–1

+1

–1

+1

PAHV

PAHV

PAHV

–1

+1

Det 1

Det 2

Det 3      
  Fig 5.2     Repeated measurements. If detector 1 (Det 1) measures +1, then detector 3 (Det 3) 
will measure +1 with 100% probability, and detector 2 (Det 2) will not register anything. 
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corresponding eigenstate    . If a subsequent measurement is performed, before the 
state of the system has a chance to change, the result     will again be obtained, with 
100% probability. 

 EXAMPLE 5.1 
 A measurement of   HV   is performed for a beam of photons prepared in the right-
circular polarization state   R  . What are the possible outcomes of this measure-
ment? What are their probabilities? For each outcome, what state is the system 
left in? 

 The possible results are the eigenvalues: +1 for horizontal, and –1 for vertical. 

 For a measurement yielding +1, the probability is   
2

1 1/ 2P R H R  . 

After such a measurement, the beam of photons is left in state   H  . 

 For a measurement yielding –1, the probability is   
2

1 1/ 2P R V R  . After 

such a measurement, the beam of photons is left in state   V  .  

 We once again need to make a caveat to the wording we’ve used in a postulate. 
Postulate III(b) assumes that each eigenvalue has a  unique  corresponding eigenstate. 
If this is the case, then the operator is said to possess a nondegenerate eigenvalue 
 spectrum. However, sometimes there is more than one eigenstate corresponding to a 
particular eigenvalue; this eigenvalue is said to be degenerate. The degeneracy of the 
eigenvalue equals the number of eigenstates that correspond to the eigenvalue (e.g., if 
an eigenvalue has three eigenstates, it is said to be three-fold degenerate). For degener-
ate eigenvalues, each of the corresponding eigenstates contributes to the probability of 
the measurement. We will generalize postulate III(b) to account for this fact when the 
need arises.     

   5.3    EXPECTATION VALUES   

 Let’s examine some further ways in which the polarization operator   ˆ HV   is useful by com-
puting   ˆ HV   for the general state   H Vc H c V  . Using eq. (5.4), we fi nd

  2 2

22

ˆ 1 1

1 1

1 1

.

HV

H V

H H V V

H H V V

H V

c c

  (5.5)

Note that this is equal to the average polarization we found in eq. (5.2), and since we’ve 
done this calculation for an arbitrary state,   ˆ HV   will always yield the average 
polarization. 
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 We call the quantity   ˆ ˆO O   the expectation value of  O . The expectation 
value is equal to the average we’d obtain from measurements of  O , to within the exper-
imental and statistical errors, assuming the system is prepared in state    . 

 Applying the procedures described in  chapter  1   to   Ô , we fi nd that the variance   2O   
is given by

  

22

2

22

22

22

ˆ

ˆ ˆ

ˆ ˆ ˆ ˆ2

ˆ ˆ ˆ ˆ2

ˆ ˆ .

O O

O O

O O O O

O O O O

O O

  (5.6)

The standard deviation   O  is once again given by the square root of the variance. 

 EXAMPLE 5.2 
 Compute the expectation value and the standard deviation of   HV  , for a beam of pho-
tons prepared in the state   R  . 

 The expectation value is given by

  
2 2

2 2

ˆ ˆ

1 1

1 1

1
2 2

0.

HV HVR R

R H H V V R

H R V R

i

  (5.7)

Physically, this can be interpreted by the fact that a right-circularly polarized beam will 
split equally at a PA HV . Half the time we will measure a vertically polarized photon (–1), 
and half the time we will measure a horizontally polarized photon (+1). These measure-
ments will average to 0 (to within the statistical errors). 

 To fi nd variance, we must fi rst determine   2ˆ HV  :

  

2

2 2

ˆ 1 1 1 1

1 1

1̂.

HV H H V V H H V V

H H V V

H H V V
  (5.8)

The last line follows from eq. (4.33). The variance   2
HV   is then
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22 2

2

ˆ ˆ

ˆ ˆ1

1 0
1.

HV HV HV

HVR R   (5.9)

The standard deviation is   2 1HV HV  , which is reasonable for a value that 
alternates randomly between +1 and –1.  

 The term expectation value can be misleading, as seen from the previous example. 
There we found that the expectation value of   HV   was 0, so you might expect that 0 
would be the most likely result of a measurement. However, the only allowed measure-
ment values are  + 1, so you would  never  expect to measure 0. The expectation value is 
the expected value of the  average  of a series of measurements, not the expected value 
of any  individual  measurement.    

   5.4    OPERATORS AND MEASUREMENTS   

 We should clarify something that can be confusing. Measurements correspond to Hermi-
tian operators; operators change one state into another; after a measurement the state of a 
system is changed. Given these facts, it is tempting to believe that the output state resulting 
from a measurement can be obtained mathematically by applying the corresponding Her-
mitian operator to the input state. In other words, assume we want to make a measurement 
of observable  O , for a system prepared in the input state   i  . You are likely to  want  to say 
that after the measurement the system is left in state   ˆ iO  . However, after a measure-
ment the system is generally  not  left in state   ˆ iO  . I’ll illustrate this with an example. 

 EXAMPLE 5.3 
 Is ˆ HV R    the output state that would be obtained from a measurement of   HV  , for a 
beam of photons prepared in state   R  ? 

 We can answer this using the matrix representation of   ˆ HV  . In general, a Hermitian 
operator expressed in the basis of its eigenstates is diagonal, with its eigenvalues mak-
ing up the diagonal elements, and in the problems you will verify that

  
1 0ˆ
0 1HV

HV

 . (5.10)

Using this,

  

1 0 11ˆ
0 1 2

11
2

.

HV
HV

R
i

i

L

  (5.11)
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Clearly this cannot be the output state of a measurement of    HV   because  L  is not an 
eigenstate of      ˆ HV   , and we know that the output state must be an eigenstate. The pos-
sible outputs for this measurement were discussed in example 5.1. The answer to our 
question is “no.”  

 In hindsight, it should be obvious that simply applying an operator to the input state 
cannot always yield the output state. This is because applying an operator to a state is a 
deterministic process; you always obtain the same result. Measurements are probabil-
istic; in general there are many possible output states for a given measurement, and 
each is obtained with a different probability. There is no way to predict exactly what the 
state of a system will be after a measurement. The take-home message is this: Applying 
an operator and performing a measurement are  not  the same thing.    

   5.5    COMMUTATION AND INDETERMINACY RELATIONS   

 In sec. 4.1 we said that operators do not in general commute,   ˆ ˆˆ ˆAB BA . The commutator 
of   Â  and  B̂  is defi ned as

  ˆ ˆ ˆˆ ˆ ˆ,A B AB BA , (5.12)

and is itself an operator. If   ˆ ˆ, 0A B   the operators commute, and the order of the 
 operations doesn’t matter. 

 Now consider observables  A  and  B , with corresponding Hermitian operators   Â  and 
  B̂ . We make a series of measurements of  A , on an ensemble of many copies of a system, 
all prepared in the state    . The uncertainty in such a measurement is expressed as the 
standard deviation   A . Thus, the uncertainty is the square root of the variance

  

2
2

†

ˆ ˆ

ˆ ˆ ˆ ˆ ,

A A A

A A A A

  (5.13)

where the second line follows because   Â  is Hermitian. If we defi ne the new state

  ˆ ˆa A A  , (5.14)

then   2A a a  . After making these measurements of  A , we change our apparatus to 
perform a series of measurements of  B , with a new ensemble of many copies of the 
system, all prepared in the same state    . Defi ning

  ˆ ˆb B B  , (5.15)

the variance of these measurements is   2B b b  . 
 The Schwartz inequality gives a relationship between the inner products,

  
2

a a b b a b  , (5.16)
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which you’ll prove in the problems. This means that

   
22 2A B a b ,  

  A B a b  . (5.17)

Since   a b   is in general complex,

   

2 22

2

2

Re Im

Im

1 .
2

a b a b a b

a b

a b b a
i

  (5.18)

Furthermore,

   

†ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆˆ ˆ .

a b A A B B

A A B B

AB A B B A A B

AB A B

  (5.19)

The equation for   b a   looks the same, with the   Â ’s and   B̂ ’s exchanged. Combining 
eqs. (5.17), (5.18), and (5.19) yields

   

1
2
1 ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ
2
1 ˆ ˆˆ ˆ .
2

A B a b b a
i

AB A B BA B A

AB BA

  (5.20)

Finally, we recognize the commutator in the last line, so

  1 ˆ ˆ,
2

A B A B  . (5.21) 

 This is an extremely important property of quantum measurements. It says that there 
is a lower bound on the product of the uncertainties of the measurements of two observ-
ables, which is set by the expectation value of the commutator. If this expectation value 
is nonzero, the uncertainty in one of the measurements must increase if the uncertainty 
in the other decreases. 
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 Equation (5.21) represents the indeterminacy relation between   Â  and   B̂ . Some peo-
ple refer to this as an uncertainty relation, or an uncertainty principle, but I prefer the 
term indeterminacy relation (my reasoning for this is given below).   4    

 EXAMPLE 5.4 
 A beam of photons is prepared in the state   R  . Measurements of   HV   and   45  
[  45ˆ 1 45 45 1 45 45  ] are performed separately on this beam. De-
termine the uncertainties in these measurements, and show that they are consistent with 
the corresponding indeterminacy relation. 

 The indeterminacy relation we need to verify is

   45 45
1 ˆ ˆ,
2HV HV  . (5.22)

In example 5.2 we showed that   1HV  . To solve the rest of the problem, start with 
the matrix representation of   45ˆ  . In the problems you will verify that this is given by

   45
0 1ˆ
1 0 HV

.  (5.23)

We fi nd 45   by fi nding   45ˆ   and   2
45ˆ   :

   

45 45ˆ ˆ

0 1 11 11
1 02 2

1 1
12

1
2
0 .

HV
HV HV

HV
HV

R R

i
i

i
i

i i

   (5.24)

  

2
45

0 1 0 1ˆ
1 0 1 0

1 0
0 1

1̂ .

HV HV

HV

  (5.25)

    4.     The original Heisenberg indeterminacy relation (which we’ll discuss later) applies to two specifi c 
observables, position and momentum. 
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Therefore, 

  

22 2
45 45 45

2
45

ˆ ˆ

ˆ ˆ1

1 0
1,

R R   (5.26)

and the uncertainty is   2
45 45 1 . 

 The matrix representation of   ˆ HV   is given in eq. (5.10). The matrix representation 
of the commutator is then

    

45 45 45ˆ ˆ ˆ ˆ ˆ ˆ,

1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1

0 1 0 1
1 0 1 0

0 2
.

2 0

HV HV HV

HV HV HV HV

HV HV

HV

  (5.27)

The expectation value of the commutator is

   

45
0 2 11 1ˆ ˆ, 1
2 02 2

1
1

2 .

HV HV
HV

HV

i
i

i
i

i i
i

  (5.28)

Substituting our values into eq. (5.22) yields

   11 1 2
2

i  , 

   1 1 , (5.29)

which shows that the indeterminacy relation is satisfi ed. 
 The state   R   is said to be a minimum uncertainty state for   HV   and   45  measure-

ments, because the uncertainty product is equal to the minimum value allowed by the 
indeterminacy relation.  
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 The indeterminacy relation is often presented as an explanation of why a particular 
measurement apparatus cannot measure two noncommuting observables with arbitrary 
precision. These explanations are usually unsatisfactory, because they always leave 
you wondering whether or not you could increase the precision with a different appara-
tus. Note, however, that eq. (5.21) does not refer to any particular apparatus. The state 
of the system     determines the minimum value of the uncertainty product, not a par-
ticular measurement scheme. 

 This is one reason why I prefer the term indeterminacy relation over the term uncer-
tainty relation. Uncertainty relation might imply that the lower bound is due to uncer-
tainties in the measurements. Indeterminacy relation makes it more clear that properties 
corresponding to noncommuting observables are inherently not well defi ned in quan-
tum systems prior to a measurement. 

 We need to be clear that the indeterminacy relation of eq. (5.21) applies to measure-
ments of  A  and  B  performed on  separate  sub-ensembles. We prepare a system many 
times in state     and make measurements of  A  using one set of particles. We then 
change our apparatus to make measurements of  B , and then make these measurements 
on the same system, prepared in the same state, but with a different set of particles. We 
never try to make measurements of both  A  and  B  on the  same  particle. 

 Suppose we try to make both   HV   and   45  measurements on the same photons for 
a system prepared in state    . If we make the   HV   measurement fi rst, then by postu-
late III(b) the state of the system after the measurement will be   H   or   V  , not    . The 
state of the system has changed before the   45  measurement, so it no longer makes 
sense to use the state     when we are computing quantities such as   45 . Clearly eq. 
(5.21) cannot correspond to measurements performed in this way. 

 In order to make meaningful measurements of two different, noncommuting observ-
ables on the same ensemble, you must sacrifi ce some measurement precision. For this 
reason, it can be shown that the uncertainty product for such measurements is always 
 larger  than that for separate measurements [5.3].    

   5.6    COMPLEMENTARITY   

 Look back at experiment 6 in sec. 3.7, which describes single-photon interference. This 
is an experiment that you can perform, as described in lab 3. Here we want to explain 
the presence or absence of a single-photon interference pattern in terms of information, 
rather than in terms of wave interference. 

 The fi rst PA HV  in combination with a beam block [ fi gs.  3.7(a)  and  (b)  ] effectively 
performs a measurement of polarization, changing the state of the system. This meas-
urement yields information—we know which path the photon took through the inter-
ferometer. Since we know which path it took, it clearly took only one path, so the 
relative phase between the two arms makes no difference, and we see no interference. 
If the beam block is removed [as in  fi g.  3.8  ] no measurement is performed; we can 
obtain no information about the path of the photon, so it takes both paths and interferes 
with itself. 

 Lab 3 describes a variation of this experiment, which involves examining the behav-
ior of the interferometer with different wave-plate settings, and is often referred to as a 



 102   •  Q U A N T U M  M E C H A N I C S

    5.     It is in principle possible to retrieve the interference pattern, even with the internal measurement 
 apparatus in place, by erasing the which-path information obtained from the measurement. See ref.   [5.4]   for 
an example of how to do this. 

    6.     Another explanation for the lack of an interference pattern with the internal measurement apparatus in 
place is that the nondestructive measurement alters the phase of photons passing through it, even though it does 
not affect their polarization. This measurement induced phase change is enough to destroy the interference. 

quantum eraser. The idea in this variation is that for certain wave-plate settings, we 
know which path the photon takes through the interferometer, so no interference is 
observed. For other wave-plate settings the which-path information is not available (it’s 
“erased”), allowing the interference pattern to be recovered. 

 Now let’s examine a different experiment that has been proposed, but to my knowl-
edge has not yet been performed. A diagram of this experiment is shown in  fi g.  5.3  . The 
experimental arrangement is the same as that in experiment 6 ( fi g.  3.8  ), except that a 
nondestructive measurement takes place inside the interferometer. In experiment 6 we 
said that all  N  photons that entered the interferometer leave through the   45   output 
port. Does the internal polarization measurement have any effect on this result?    

 It does. With the internal polarization measurement apparatus in place, half of the 
photons will leave from the   45   port, and the other half will leave from the   45   port. 
No interference will be observed if the phase of the interferometer is varied. This is 
because even though neither arm is blocked, the internal apparatus performs a measure-
ment of the polarization. For example, if the nondestructive measurement says that the 
photon is horizontally polarized, after the measurement the state of the photon is   H  , 
and we know which arm of the interferometer the photon travels through. Since the 
photon takes only one path, there is no interference.   5    

 If this result unsettles you, you are not alone. You probably want to believe that whether 
or not we measure the polarization of the photon inside the interferometer, the experimen-
tal results should not be affected. However, that’s not what quantum mechanics predicts. 
Someday, someone will do the experiment outlined in  fi g.  5.3  , to test whether or not the 
quantum prediction holds. I’m willing to bet that the quantum prediction will be verifi ed.   6    

 The experiment in  fi g.  5.3   would be a very stringent test of the principle of comple-
mentarity, a concept fi rst put forward by Niels Bohr. The idea is that quantum objects 
have mutually exclusive, complementary properties. For example, we can conceive of 
light being made of waves, or being made of particles, but not both. Yet, photons seem 
to exhibit both wave-like and particle-like behaviors. 

  

N

PA
HV

45

PA
HV

H

V

?

?/2
=45o

PA45

45

45

–1

+1

     
  Fig 5.3     A single photon interference experiment with a nondestructive polarization measure-
ment performed inside the interferometer. 
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 A key component of complementarity is that we can either observe the wave-like 
(unlocalized), or the particle-like (localized), nature of light, but not both simultane-
ously. If we remove the internal measurement apparatus from  fi g.  5.3  , we have no 
knowledge about which path the photon took, and we see wave-like interference. With 
the apparatus in place, a measurement localizes the photon to a particular arm, and we 
observe particle-like behavior (no interference). 

 This need not be an either-or proposition. If we obtain partial information about the 
path of the photon, the interference is partially destroyed. For example, if 10% of the 
time we know the photon’s path (maybe the nondestructive measurement succeeds 
only 10% of the time), then the visibility of the interference pattern, averaged over a 
large ensemble, might be 90%, whereas if we know the path 50% of the time, the visi-
bility would be reduced to 50%.   7    

 One last comment. In lab 3 you are able to see an interference pattern while simul-
taneously verifying that only a single photon at a time is inside the interferometer. The 
interference pattern illustrates the wave-like nature of light, while the fact that the pho-
ton leaves the interferometer from either one port or the other, but not both, illustrates 
the particle-like nature of light. Does this violate complementarity? No. The measure-
ment that displays the particle-like behavior occurs  outside  the interferometer.  Inside  
the interferometer we have no way of knowing which way the photon went, so it takes 
both paths and interferes with itself. The wave-like nature of the photon manifests itself 
inside the interferometer, and the particle-like nature outside. This is consistent with 
Bohr’s principle of complementarity.      
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         5.8  PROBLEMS    

           5.1*     Prove that   ˆ HV   is Hermitian.  
      5.2*     Determine the matrix representation of   ˆ HV   in the  HV -basis.  
      5.3     What is the matrix representation of the polarization operator   ˆ HV  , using the 

states   L   and   R   as a basis?  
      5.4     Prove that eq. (5.3) and eq. (5.4) are equivalent. In other words, prove that for a 

general state   H Vc H c V  , both of these equations yield the same value 

for   ˆ HV  .  

    7.     See complement 2.A for a discussion of visibility. Lower visibility means, in some sense, less interference. 
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      5.5     A measurement of   HV   is performed for a beam of photons prepared in the 
state   / 31/ 3 2 / 3 iH e V  . What are the possible outcomes of this 
measurement? What are their probabilities? For each outcome, what state is the 
system left in?  

      5.6*     Does the projection operator   45
ˆ 45 45P   correspond to an observable? If 

not, why not? If it does: How might you implement this measurement? What 
are the possible outcomes of measurements of   45P  ? For each outcome, what 
state is the system left in?  

      5.7*     Does the rotation operator   ˆ pR   correspond to an observable? If not, why not? 
If it does: How might you implement this measurement? What are the possible 
outcomes of measurements of   pR  ? For each outcome, what state is the sys-
tem left in?  

      5.8     Calculate the expectation value and standard deviation of   HV   for a beam of 
photons prepared in the state   / 31/ 3 2 / 3 iH e V  .  

      5.9     Calculate the expectation value and standard deviation of   HV   for a beam of 
photons prepared in an elliptical polarization state   cos sin ie H e V  .  

      5.10     Calculate the expectation value and standard deviation of   45
ˆ 45 45P   for a 

beam of photons prepared in a linear polarization state   cos sinH V  .  

      5.11     Determine the matrix representation of   45ˆ   in the  HV -basis.  

      5.12*     In analogy with   ˆ HV   and   45ˆ  , defi ne   ˆ C , which is the operator corresponding 
to measurement of circular polarization. Defi ne this operator such that measure-
ments of left-circular polarization yield positive values. Find the matrix repre-
sentation of   ˆ C  in the  HV -basis.  

      5.13     Show that   45ˆ ˆ ˆ, 2HV Ci  , where   ˆ C  is defi ned in problem 5.12.  

      5.14     Show that   45ˆ ˆ ˆ, 2HV C i  , where   ˆ C  is defi ned in problem 5.12.  

      5.15     Calculate   45
ˆ ˆ, VP P  . Express your answer in the  HV -basis.  

      5.16     A measurement of   45  is performed for a beam of photons prepared in the 
state   / 31/ 3 2 / 3 iH e V  . What are the possible outcomes of this 
measurement? What are their probabilities? For each outcome, what state is the 
system left in?  

      5.17*     A measurement of   HV   is performed on a photon prepared in state   L  . A meas-
urement of   C  (problem 5.12) is then performed on a second photon prepared 
in the same state. What is the probability that the fi rst measurement returns   1 , 
and the second returns   1 ?  

      5.18*     A measurement of   HV   is performed on a photon prepared in state   L  . A meas-
urement of   C  (problem 5.12) is then performed on the same photon. What is 
the probability that the fi rst measurement returns   1 , and the second returns   1 ?  
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      5.19     Verify that measurements of   HV   and   45  satisfy the appropriate 
indeterminacy relation for a beam of photons prepared in the state 
  / 31/ 3 2 / 3 iH e V  .  

      5.20     Verify that measurements of   HV   and   C  (problem 5.12) satisfy the appro-
priate indeterminacy relation for a beam of photons prepared in the elliptical 
polarization state   cos sin ie H e V  .  

      5.21     Verify that measurements of   45  and   C  (problem 5.12) satisfy the appropriate 
indeterminacy relation for a beam of photons prepared in the elliptical polariza-
tion state   cos sin ie H e V  .  

      5.22     Verify that measurements of   45  and   C  (problem 5.12) satisfy the appropriate 
indeterminacy relation for a beam of photons prepared in an eigenstate of   45ˆ  .  

      5.23*     Prove the Schwartz inequality:   
2

a a b b a b  . Hint: Let

   
b a

a b
b b

 , (5.30)

and use   0 .  
      5.24     An operator is said to be anti-Hermitian if   †ˆ ˆO O . If   Â  and  B̂   are Hermitian, 

prove that   ˆ ˆ,A B   is anti-Hermitian.  

      5.25     If Â   and   B̂  are Hermitian, and   ˆ ˆˆ,A B iC , prove that   Ĉ   is Hermitian. Given 
this defi nition of   Ĉ  , you will often see the indeterminacy principle written as 

  1 ˆ
2

A B C  .   

        



    COMPLEMENT 5.A      

  “Measuring” a Quantum State   

 The state     of a quantum mechanical system determines the probabilities of the out-
comes of measurements that can be performed on that system. In this sense it contains 
 all  of the knowable information about the system; if you know the state, you know the 
probability of  any  measurement you could perform on that system. It is thus natural to 
ask: Is it possible to measure (or otherwise determine) the state of a system? 

 The answer is yes, and here we’ll describe a process for reconstructing the state of a 
very simple system. You’ll be able to perform this state measurement in lab 4. We’ll 
assume that the state is pure, so that it can be represented by a ket vector    .   8      

   5.A.1    Reconstructing a Polarization State   

 Imagine that we have a beam of photons prepared in a particular polarization state    . 
To measure the state we must determine the probability amplitudes of the representa-
tion of the state in some basis. If we represent the state as H Vc H c V   , we 
need to determine   Hc   and   Vc   to determine the state. 

 Start by passing the beam through a PA HV  and splitting it into its horizontal and ver-
tical components, as shown in fi g. 5.A.1. As described in eq. (5.1), the probabilities of 
horizontal and vertical measurements are

   
2 2

HP H H c  , 

  
2 2

VP V V c  . (5.A.1)

Many measurements, with the system prepared in the same state, are needed to get an 
accurate determination of these probabilities.    

    8.     The general process of determining mixed states of more complicated systems is often referred to as 
quantum state tomography. The word tomography is used because the original state measurements used a math-
ematical reconstruction algorithm similar to that used in tomographic imaging. See also refs.   [5.A.1]  and  [5.A.2]  . 
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 The measurements yield probabilities, but what we really need are probability 
 amplitudes . Probability amplitudes are complex numbers; the measurements determine 
their magnitudes, but we still need to determine their phases. With this in mind, let’s 
rewrite the state in a manner that explicitly indicates the magnitudes and phases of the 
probability amplitudes:

   

.

H V
ii VH

H V

ii V HH

c H c V

c e H c e V

e a H be V

  (5.A.2)

Here we’ve defi ned   Ha c   and

   21Vb c a  , (5.A.3)

which holds because the probabilities must be normalized. The overall phase factor in 
eq. (5.A.2) does not change the state, so we can safely set   0H  . Defi ne   V  , and 
we can then rewrite eq. (5.A.2) as

   ia H be V  . (5.A.4)  

 Equation (5.A.4) indicates that we must determine three real-valued quantities,  a ,  b  and 
   , to fully determine the state. The measurements shown in fi g. 5.A.1 determine  a  and 
 b , because  a  is given by 

 a P H  , (5.A.5)

and  b  is easily obtained from  a  using eq. (5.A.3). There is no way to determine     from 
these measurements, however, so we need to perform other measurements as well. 

 Next we perform a similar series of measurements, but replace the PA HV  in fi g. 5.A.1 
with a PA 45 . The state preparation procedure must remain the same; this ensures that the 
state     is the same for all measurements. The probability of obtaining a +45° polar-
ized photon is given by

  PA
HV

H

V

     

  Fig 5.A.1     Performing a (destructive) measurement of polarization. 
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  2

2

2

45 45

45

2 2

i

i

P

a H b e V

a b e

 

 (5.A.6)

2 21 2 cos
2
1 1 2 cos ,
2

a ab b

ab

where we’ve used eq. (5.A.3). Since  a  and  b  are known from the fi rst set of measure-
ments, this equation can be inverted to obtain   cos   from   45P  , which is deter-
mined by the second set of measurements. 

 However, the inverse cosine is not unique. Suppose, for example, that we determine 
  cos 0.5 , then   / 3  or   / 3 . With the information that we have from our two 
sets of measurements, we cannot in general choose between these possibilities. We 
need to perform a third set of measurements, on yet more members of the ensemble. 

 Now we modify our apparatus to perform measurements of circular polarization, 
using a PA C  in place of the PA HV  in fi g. 5.A.1. Once again, it is necessary to use the 
same state preparation procedure, in order to produce the same state. The probability of 
measuring a left-circularly polarized photon is

  2

2

2

2 2

2 2
1
2
1 1 2 sin .
2

i

i

i i

P L L

L a H b e V

a bi e

a ab ie ie b

ab

 

 (5.A.7)

This can be inverted to obtain   sin  . Knowing both   sin   and   cos   uniquely determines    . 
Above we were trying to choose between   / 3  and   / 3 ; simply knowing 
whether   sin   is positive or negative is enough to make this determination. 

 EXAMPLE 5.A.1 
 Polarization measurements are performed for three different device settings, as described 
above, for many photons all prepared in the same state. If the following probabilities 
are obtained:   0.50P H  ,   45 0.93P  , and   0.25P L  , what is the 
polarization state of the system? 
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 Express the state using eq. (5.A.4). First, we determine  a  and  b :

  10.50
2

a P H   , (5.A.8)

 2 11
2

b a  . (5.A.9) 

 Substituting these into eq. (5.A.6), we fi nd 

 145 1 cos .
2

P   (5.A.10)

Solving for   cos   yields

  cos 2 45 1

2 0.93 1
0.86 .

P   (5.A.11)

The two solutions for     are then

  1cos 0.86
0.54 rad

= 0.17
/ 6 .

  (5.A.12) 

 Examining eq. (5.A.7) shows that if   0 ,   0.5P L  , and if   0 ,   0.5P L   
Our data then indicate that we should choose the negative solution, which is   / 6 . 
The fi nal solution is thus

  / 61
2

iH e V   . (5.A.13)    

   5.A.2    Discussion   

 Note that it was necessary to perform more than one set of measurements, cor-
responding to more than one measurement apparatus (observable), in order to de-
termine the state. This is a general property of all state measurement procedures. 
You can view this as a manifestation of complementarity. Quantum systems have 
complementary aspects, so it is necessary to perform measurements of multiple 
observables in order to illuminate the properties of a state which refl ects these dif-
ferent aspects. 

 The state that we determine describes the state of all of the copies of the system, 
which must all be identically prepared. It is impossible to measure the state of a single 
member of the ensemble. You cannot, even in principle, determine the polarization 
state of a single photon. In order to determine a state you must measure probabilities, 
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which requires multiple trials. Once the fi rst measurement is performed, the state of the 
system is changed (remember postulate III(b)?). You can’t use this photon for the next 
trial, because it is no longer in the same state. It is necessary to repeat the state prepara-
tion procedure for the next measurement. 

 In this light, we can view the state as being a consequence of the procedure used to 
prepare the system. Any individual member of the system that has undergone the proper 
preparation will be in that state.         
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         5.A.4  PROBLEMS    
     
       5.A.1     Polarization measurements are performed for three different device settings, as 

described above, for photons all prepared in the same state. The following probabil-
ities are obtained:   0.50P H  ,   45 0.75P  , and   0.93P L  . 
What is the polarization state of the system?  

      5.A.2     Polarization measurements are performed for three different device settings, as 
described above, for photons all prepared in the same state. The following probabil-
ities are obtained:   0.67P H  ,   45 0.50P  , and   0.97P L  . 
What is the polarization state of the system?  

      5.A.3     You perform polarization measurements using a PA HV  on 1000 photons pre-
pared in an unknown state. 997 of the photons are measured to have horizontal 
polarization. What can you say about the polarization state?  

      5.A.4     Suppose you are performing a polarization state measurement, and you know 
that the state is linearly polarized. How would this change the measurement 
procedure described above? How many different device settings would you 
need to uniquely determine the state?                   



         CHAPTER 6 

Spin-1/2  

    So far we’ve been studying polarization, and using photon polarization as an example 
of a two-dimensional (2-D) quantum system. Polarization was a nice place to start, 
because there are strong analogies between quantum and classical polarization. Now 
we’ll study a new system that has no classical counterpart—spin-1/2 particles. This 
system is also two-dimensional, and it has many analogs in polarization. However, 
you’ll see that many of the classical correspondences we were able to make before no 
longer apply. 

      6.1    THE STERN-GERLACH EXPERIMENT     

   6.1.1    Force on a Magnetic Dipole   

 A magnetic dipole with dipole moment    , in a magnetic fi eld   B  , has potential energy 
    V B  , (6.1)
and the force on the dipole is
      VF B  . (6.2) 
 If the dipole is small, and the magnetic fi eld is uniform, the gradient is 0, so   0F  . If, 
however, the fi eld is nonuniform, there will be a net force. Assuming the gradient points 
in the  z -direction, and the dipole is small compared to the length scale over which the 
fi eld changes, the force is 

       z zz
BF   . (6.3) 

 One way to create a nonuniform magnetic fi eld would be to arrange some permanent 
magnets into a geometry like that shown in  fi g.  6.1  . Otto Stern and Walther Gerlach 
used a device like this in 1922 to perform an important experiment.    

 Consider a beam of atoms emitted from an oven, as shown in  fi g.  6.2  . There are slits 
placed so that the atoms in the beam are roughly collimated, and the beam passes 
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through the Stern-Gerlach magnet shown in  fi g.  6.1  . A screen is placed beyond the 
magnet, and the distribution of atoms striking the screen is viewed to determine how 
the magnetic fi eld defl ects them. What would you predict will happen?.    

 In  fi g.  6.2   the gradient of   B   is pointing down (  /z zB   is negative). If the 
 z -component of the magnetic dipole moment of an atom is pointing down as well 
(  z  negative), then eq. (6.3) predicts an upward force on the atom, so it will be 
defl ected up. If   z  is positive the atom will be defl ected down. The larger the mag-
nitude of   z , the larger the force, hence the larger the defl ection. By knowing a few 
things like the mass of the atoms and the geometry, you can calibrate the device so 
that by measuring the amount of defl ection you measure   z . 

 The oven is hot, and shielded from magnetic fi elds, so we’d expect that the direc-
tions of the dipoles would be random. If the dipole is straight up, there will be a maxi-
mum value for the  z -component of the dipole moment   z  , producing a maximum 
downward defl ection; if the dipole is straight down, there will be a  maximum upward 
defl ection. Most of the atoms will have defl ections somewhere between these two 
extremes. So, we’d expect to see a distribution of atoms like that shown in  fi g.  6.3  (a), 
centered on no defl ection, and extending upward and downward the same amount. 
However, this is not what Stern and Gerlach observed in their experiment. Instead, they 
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  Fig 6.1     A Stern-Gerlach magnet. The magnetic fi eld   B  between the north and south poles 
points upward, but the gradient of the fi eld   B   points downward.   
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  Fig 6.2     The Stern-Gerlach experiment.   
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saw a two-peaked distribution like that shown in  fi g.  6.3  (b), with one peak above the 
center and one below, and with no atoms going straight through.    

 The history of the Stern-Gerlach experiment is interesting, complete with wrong 
interpretations and experimental issues related to cigar smoke [6.1]. The present-day 
interpretation of the results is that   z  takes on two distinct values, one positive and one 
negative, not the continuous distribution of values from     to     as classical physics 
predicts. The  z -component of the magnetic dipole moment is quantized.    

   6.1.2    Spin   

 Stern and Gerlach used silver atoms in their experiment, and we now know that the 
magnetic dipole moment of silver comes predominately from a single unpaired elec-
tron in its outer orbital shell (the magnetic moments of paired electrons point in oppo-
site directions and cancel out, while the nuclear contribution to the magnetic moment 
is small). This magnetic moment comes from a property of particles called spin. The 
magnetic dipole moment of a particle is related to its spin   S  by 

        S , (6.4)

where     is a property of the particle called the gyromagnetic ratio. 
 Spin was fi rst postulated by George Uhlenbeck and Samuel Goudsmit in 1925 in 

order to explain some spectroscopic observations [6.2]. The word spin comes from the 
fact that it is natural to associate a magnetic moment with a charged spinning particle 
(see problem 6.2). Uhlenbeck and Goudsmit originally believed that the particle was 
actually spinning, but Uhlenbeck soon realized that the magnitude of the spin of an 
electron could not be accounted for in this way—it would need to be spinning too fast. 
Now we know that spin is an intrinsic angular momentum associated with a particle 
(like mass or charge), and is not due to the particle actually spinning. This angular 
momentum leads to a dipole moment via eq. (6.4). Spin is a purely quantum mechani-
cal property, with no classical analog. In non-relativistic quantum mechanics we need 
to add spin to the theory in an ad hoc manner; however, it arises naturally in Dirac’s 
relativistic theory of the electron. 

 Since the magnetic dipole moment of silver atoms is due to a single electron, we 
could repeat the Stern-Gerlach experiment of  fi g.  6.2   using electrons instead of silver 
atoms, and get essentially the same result as shown in  fi g.  6.3  . Because electrons have 

  Expected Observed

(a) (b)

    
  Fig 6.3     Expected (a) and observed (b) distributions of atoms in the Stern-Gerlach experiment.   
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negative charge, they have a negative gyromagnetic ratio (  11 1 11.76 10 s Te  ). 
Therefore, by eq. (6.4), the magnetic dipole moment and the spin of an electron point 
in opposite directions. In the Stern-Gerlach experiment ( fi g.  6.2  ) with electrons, a 
downward defl ected electron has a positive   z , so it follows that the  z -component of 
spin   zS   is negative for downward defl ected electrons. Similarly, for upward defl ected 
electrons   zS   is positive. The two allowed values of   z  mean that there only two allowed 
values of   zS   for an electron, and they are 

       1
2zS   . (6.5) 

 The constant     is pronounced “h-bar,” and is equal to Planck’s constant  h , divided 
by   2  ;   341.055 10 J s , and it has units of angular momentum. Electrons which 
have positive   zS   are said to be “spin-up,” while electrons with negative   zS   are said 
to be “spin-down.” As we’ll see in more detail in  chapter  7  , the factor of 1/2 in front 
of the     in eq. (6.5) comes from the fact that electrons are spin-1/2 particles. All 
spin-1/2 particles have two allowed values for the  z -component of spin, given by 
eq. (6.5).     

   6.2    SPIN STATES   

 In  chapter  3   (and lab 3) we discussed a series of experiments exploring the polariza-
tion states of individual photons. We used these experiments to develop the notion of 
quantum states. Now we’re going to talk about analogous experiments exploring spin 
states.   1    There are some similarities with the polarization experiments, but also some 
important differences. You won’t actually do these experiments, but experiments like 
these have been performed [6.4]. 

 We’ll describe these experiments using spin analyzers, SAs, which are analogous to 
the polarization analyzers we’ve discussed previously. A spin analyzer consists of 
Stern-Gerlach magnets, oriented as shown in  fi g.  6.4  , which split a beam of electrons 
into spin-up and spin-down components.      

   6.2.1    Experiment 1   

 Consider the experimental arrangement of  fi g.  6.5  . A beam of electrons prepared in 
an unknown spin state     enters a spin analyzer oriented in the  z -direction, SA z . 
Electrons with spin-down (  / 2zS  ) are defl ected downward and blocked, while  N  
electrons with spin-up (  / 2zS  ) are passed to a second SA z . All  N  of these electrons 
emerge from the second SA z  with spin-up. If we were to block the spin-up electrons 
instead, we would fi nd that all of the electrons would emerge from the second SA z  
with spin-down.    

   1.     These experiments are similar to those described in ref.   [6.3]  . 
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 In  fi g.  6.5   the fi rst SA z , in combination with the beam block, serves as a state prepa-
ration device—the electrons are prepared in a state corresponding to spin-up along the 
 z -direction. We will refer to this state as   z  ; electrons with spin-down along the 
 z -direction are in state   z  . These states are normalized so   1z z   and   1z z  . 
Electrons which enter the second SA z  in state   z   emerge in the same state with 100% 
probability. There is no probability of emerging in state   z  , so   z   and   z   must be 
orthogonal:

      0z z     .   (6.6) 

 Think carefully about what eq. (6.6) says, because it may surprise you. It says that 
the quantum mechanical states corresponding to spin pointing up, and spin pointing 
down, are orthogonal. However, the 3-D, real-space vectors corresponding to up and 
down are NOT orthogonal:   1 0z zu u  ! When we were examining polariza-
tion we were lucky: If the Hilbert-space state vectors were orthogonal, then the corre-
sponding classical polarization vectors were orthogonal as well. Clearly this is not the 
case for spin-1/2 particles; our classical intuition breaks down. Remember that Hilbert-
space vectors do not really “point” in a particular direction—they are abstract quantities. 
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  Fig 6.4     A spin analyzer oriented along the  z -direction, SA z . The fi rst pair of magnets defl ects 
spin-up electrons upward, and spin-down electrons downward. The second set of magnets 
defl ects the beams so that they emerge parallel to the incoming beam.   
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  Fig 6.5     Experiment 1.   
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States that are orthogonal in Hilbert space need not correspond to 3-D–space vectors 
that are orthogonal.    

   6.2.2    The   ̂ zS   Operator   

 If we detect the electrons emerging from an SA z , then we’ve performed a measurement 
of the  z -component of spin. The  z -component of spin is an observable,   zS  , and it has 
a corresponding Hermitian operator   ̂ zS  . Since the result of a measurement must be an 
eigenvalue, Eq. (6.5) says that the eigenvalues of   ̂ zS   are   / 2 , and experiment 1 indi-
cates that the corresponding eigenstates are   z  :

     ̂
2zS z z ,  ˆ

2zS z z  . (6.7) 

 The eigenstates form an orthonormal basis, and we can express them as row and 
column vectors 

      
1
0 z

z , 
0
1 z

z  . (6.8) 

 In this basis the matrix representation of   ̂ zS   is 

      
1 0ˆ
0 12 2z z

z

S   . (6.9) 

 Here   z  is one of the Pauli matrices (or Pauli spin matrices); we’ll come across the 
others soon.     

   6.3    MORE SPIN STATES     

   6.3.1    Experiment 2   

 Now consider experiment 2, shown in  fi g.  6.6  . The SA z  and the beam block prepare 
electrons in the state   z  . These electrons then pass through a spin analyzer oriented 
along the  x -direction SA x . Half of the electrons emerge in state   x   with   / 2xS  , 
while the other half emerge in state   x   with   / 2xS  . The fact that there are positive 
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  Fig 6.6     Experiment 2.   
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and negative spin components along the  x -direction should not be surprising. There’s no 
preferred direction in space, and since there’s nothing special about the  z -direction, we 
expect the  x -direction to look the same.    

 Looking at  fi g.  6.6  , what’s probably running through your mind is that Newtonian 
physics teaches us that the motion of objects along orthogonal directions are independ-
ent of each other. Since the  x - and  z -directions are orthogonal, Newton would argue that 
the SA x  splits the beam in two components because these components were present in 
the original state    . The splitting of the beam on the SA x  should have nothing to do 
with the presence of the SA z . However, experiment 1 told us that there’s something 
funny about the orthogonality of spin states. Our classical notion of orthogonality isn’t 
always correct, so we need to check if the  x - and  z -directions really are independent of 
each other.    

   6.3.2    Experiment 3   

 We can test the independence of the  x - and  z -directions using experiment 3, shown in 
fi g 6.7. If the  x - and  z -directions are independent, then the initially prepared   z   elec-
trons should propagate through the SA x  with the  z -component of their spins unaffected. 
None of the electrons should emerge from the fi nal SA z  in state   z  . However, this is 
not what happens! Experiment 3 indicates that the  x - and  z -components of spin are  not  
independent of (orthogonal to) each other!    

 The SA x  performs a measurement; after this measurement, the electrons leave the 
SA x  in state   x  . The probabilities of the   zS   measurements performed by the second 
SA z , given the input state   x  , are

     
2 1/ 2

2zP S x z x  ,  

      
2 1/ 2

2zP S x z x  . (6.10) 

 We can write   x   as a linear combination of   z   and   z  , and eq. (6.10) indicates 
that the magnitudes of the probability amplitudes are the same. Repeating experiment 
3 using the   x   state yields the same results. Following the same procedure described 
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  Fig 6.7     Experiment 3.   
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in sec. 3.4 for polarization states, we are free to make the probability amplitudes real, 
and fi nd

     1
2

x z z , 1
2

x z z  . (6.11) 

 This says that spin-sideways is a superposition of spin-up and spin-down, which is 
defi nitely nonclassical. 

 The states of eq. (6.11) are eigenstates of the operator   ̂ xS  , with eigenvalues   / 2 . 
We can also express   ̂ xS   in the  z -basis, as shown in the following example. 

 EXAMPLE 6.1 
 Find the matrix representation of   ̂ xS   in the  z -basis. 

 In the  z -basis we know that

     
ˆ ˆ

ˆ
ˆ ˆ

x x
x

x x z

z S z z S z
S

z S z z S z
. (6.12) 

There are two ways to proceed. We know how   ̂ xS   acts on the  x -states (they’re eigen-
states), so we can rewrite the  z -states in terms of    x   and   x   to calculate the matrix 
elements. You’ll take this approach in the problems. 

 Another approach is to use eq. (4.78) to write   ̂ xS   as 

     ̂
2 2xS x x x x . (6.13) 

Then

  

ˆ
2

1
2 2

,
2

xS z x x z x x z

x x

z  (6.14) 

where we’ve used eq. (6.11) to calculate the inner products. Similarly,

  ̂
2xS z z . (6.15) 

Substituting these back into eq. (6.12) yields

  
0 1ˆ
1 02 2x x

z

S , (6.16) 

where   x  is another Pauli matrix.     
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   6.3.3    Experiments 4 and 5   

 If we repeat experiment 3, replacing the SA x  with an SA y , we get experiment 4, which is 
shown in  fi g.  6.8  . The results are essentially the same as found in experiment 3, indicat-
ing that the  y - and  z -components of spin are not independent, and that

  
2 1/ 2

2zP S y z y  , 

  
2 1/ 2

2zP S y z y   . (6.17)

The same results are obtained using the   y   state.    
 As with the  x -states, we can once again write the  y -states as linear combinations 

of   z   and   z  , with the magnitudes of the probability amplitudes being equal. 
However, just as we found for polarization states, we can no longer choose the prob-
ability amplitudes to be real, because that would make the  x -states and the  y -states 
the same. We know that these states are not the same by experiment 5, depicted in 
 fi g.  6.9   (e.g.,   y   splits into   x   and   x   components). Because we defi ned the 
 x -states using real probability amplitudes, we are forced to use complex probability 
amplitudes to describe the  y -states. In analogy with the calculation in sec. 3.5, the 
 y -states are found to be

  1
2

y z i z , 1
2

y z i z . (6.18) 
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  Fig 6.8     Experiment 4.   
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  Fig 6.9     Experiment 5.   
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These states are eigenstates of the operator   ̂ yS  , which you’ll show in problem 6.8 to be

  
0ˆ

02 2y y
z

i
S

i
  (6.19) 

 Here   y  is the third and fi nal Pauli matrix.    
 Just as we did for photons, we can calculate expectation values for measurements 

performed on spin-1/2 particles, as in the following example. 

 EXAMPLE 6.2 
 Calculate the expectation value of   yS  , for electrons prepared in the state   x  . 

   

ˆ ˆ

0 11 11 1
0 122 2

1 1
4

0 .
4

y y

z
z z

z
z

S x S x

i
i

i
i

i i

   (6.20)     

   6.4    COMMUTATION RELATIONS   

 Do the operators corresponding to the components of spin commute? Let’s see. 

 EXAMPLE 6.3 
 Find the commutator of   ̂ xS   and   ̂ yS  . 

   

2

2

2

ˆ ˆ ˆ ˆ ˆ ˆ,

0 1 0 0 0 1
1 0 0 0 1 02 2 2 2

0 0
0 04

0
02

1 0
0 12

.
2

x y x y y x

z z z z

z z

z

z

z

S S S S S S

i i
i i

i i
i i

i
i

i

i

  (6.21) 
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 This means

 ˆ ˆ ˆ,x y zS S i S   . (6.22) 

 Equation (6.22) remains true for cyclic permutations of the subscripts (the cyclic per-
mutations of  x, y, z  are  y, z, x  and  z, x, y ), so 

  ˆ ˆ ˆ,y z xS S i S  , ˆ ˆ ˆ,z x yS S i S   . (6.23) 

 Flipping the order of the operators in the commutator introduces a minus sign, so

 ˆ ˆ ˆ,y x zS S i S   . (6.24) 

 Equation (6.24) also holds for cyclic permutation of the subscripts. 
 Since the operators corresponding to the components of spin do not commute, meas-

urements of the spin components must obey an indeterminacy relation [eq. (5.21)]. For 
instance, eq. (6.22) implies that

ˆ
2x y zS S S  . (6.25) 

 In  chapter  7   we’ll explore some further ramifi cations of the fact that the spin compo-
nent operators do not commute.    

   6.5    PARTICLE INTERFERENCE     

   6.5.1    Experiment 6   

 Now, look at the experimental arrangement in  fi g.  6.10  (a). A beam of electrons in state 
  x   is split into   z   and   z   states by an SA z , and the   z   electrons are blocked. The 
  z   electrons then pass through an SA -z , which is simply an SA z  with the poles of the 
magnets reversed, in order to defl ect electrons in the opposite directions. The SA -z  defl ects 
the   z   electrons, but does not change their state. Last, an SA x  splits the   z   electrons 
equally into   x   and   x   beams. After what we’ve already discussed, there shouldn’t 
be anything here that surprises you.  Figure  6.10  (b) shows the same basic experimental 
arrangement, only with the   z   electrons blocked and the   z   electrons passed.    

 Now consider what would happen if we perform experiment 6, shown in fi g 6.10(c). 
How many electrons will come out in the   x   and   x   states? The fi rst answer that will 
probably come to mind is that the   z   electrons will split equally, and the   z   elec-
trons will split equally, so  N /2 electrons will emerge in each of the output beams. That’s 
certainly one possibility. 

 However, hopefully you’re beginning to appreciate some of the oddities of 
quantum mechanics by now, and will reconsider your fi rst inclinations. The SA z  
and the SA -z  simply split the original beam apart and recombine it. No measurement 
is performed, and no information is gained. Therefore, after these spin analyzers 
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    2.     It is also possible to insert a phase shifter inside the interferometer formed by the SA z  and the SA -z . 
This would shift the relative phase of the   z   and   z   states. A     phase shift between them would produce 

the state   1 / 2x z z  , so all  N  electrons would leave the SA x  in state   x  . 
 

the state of the beam should be unchanged, and the electrons should all be in state 
  x  . If this reasoning is correct, then all  N  electrons will emerge from the SA x  in 
state   x  . 

 The only way to decide between these two plausible arguments is to actually do 
the experiment. The result is shown in  fi g.  6.11  . Evidently, the argument that the 
combination of the SA z  and the SA -z  has no effect on the electrons is the correct 
one, as all of the electrons exit in state   x   (see problem 6.23).    

 But what happened to the electrons that were coming out in state   x   when one of 
the beams was blocked? How can we get  N /4 electrons in state   x   when the   z   
beam is passed, and another  N /4 electrons in state   x   when the   z   beam is passed, 
but get  no  electrons in state   x   when  both  beams are passed? The answer is interfer-
ence! The   z   and   z   beams interfere with each other to produce electrons in state 
  x  . This is more obvious if you recall that   1/ 2x z z  .   2    Interference 
is a property of waves, and confi rmation that electrons have wave-like properties comes 
from the observation that electrons can exhibit a two-slit diffraction pattern [6.5]. 
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  Fig 6.10     (a) and (b) show arrangements for experiment 6 in which one of the beams is 
blocked, while (c) asks what will happen if neither beam is blocked.   
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 The fact that particles such as electrons can exhibit wave-like interference is surpris-
ing to macroscopic human beings, who obey the laws of classical physics. However, 
the idea that particles exhibit wave-like properties is probably one that you have 
encountered before. The particle wavelength     is related to its momentum  p  by the 
de Broglie relation   /h p . The frequency  f  of a particle is related to its energy  E  by 
Planck’s famous formula   E hf  . For macroscopic particles the momentum is large 
enough, and   346.63 10 J sh   small enough, to make the wavelength too small to be 
observable. 

 The boundary between microscopic and macroscopic is an interesting place, and 
physicists are constantly pushing it toward larger objects.  Figure  6.12   clearly shows 
interference of C 60  molecules (carbon atoms arranged in a soccer-ball structure, 

      
  Fig 6.12     The diffraction pattern produced when a beam of C 60  molecules passes through a 
diffraction grating having a slit width of 50 nm, and a period of 100 nm. The points represent 
experimentally measured values, while the solid curve is the theoretically predicted pattern.   
   Reprinted with permission from O. Nairz, M. Arndt, and A. Zeilinger, Am. J. Phys.  71 , 319 
(2003). Copyright 2003, American Association of Physics Teachers.   

  SAz SAx

z

z x N

SA-z

Nx

    
  Fig 6.11     The result for experiment 6 when neither beam is blocked.   
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 commonly known as fullerenes or “buckyballs”). These molecules are certainly large 
compared to electrons, or even a single atom, yet they still show wave-like properties. 
In this experiment the velocity of the molecules was 136 m/s, which corresponds to a 
wavelength of   34 10 nm . Note that the diameter of the C 60  molecule itself is 
approximately 1 nm.          
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         6.7  PROBLEMS         

       6.1     Silver atoms pass through a Stern-Gerlach magnet with a fi eld gradient of 
10 T/cm. If the magnet is 3.5 cm long, and the atoms are moving at 500 m/s, 
by how far will the atoms be defl ected?  

      6.2*     Classically, a uniform, spinning sphere with charge  q  and mass  m  has a gy-
romagnetic ratio (ratio of magnetic dipole moment to angular momentum) of 
  / 2q m . In the relativistic quantum theory of the electron, this formula is 
modifi ed by the  g  factor:   / 2gq m . What is the  g  factor for the electron?  

      6.3     Write   ̂ zS   in terms of the projection operators onto the states   z   and   z  .  
      6.4     Write the states   z   and   z  , using the states   x   and   x   as a basis.  
      6.5     Using your result from problem 6.4, fi nd matrix representation of   ̂ xS   in the 

 z -basis.  
      6.6     Find the eigenstates and eigenvalues of the matrix representation of   ̂ xS   in the 

 z -basis.  
      6.7     Write the states   z   and   z  , using the states   y   and   y   as a basis.  
      6.8*     Find the matrix representation of   ̂ yS   in the  z -basis.  
      6.9     Show that 

   ̂
2yS z i z , ˆ

2yS z i z . (6.26)   

      6.10     Find the eigenstates and eigenvalues of the matrix representation of   ̂ yS   in the 
 z -basis.  

      6.11     Calculate   / 2yP S x  .  
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      6.12     Calculate   / 2xP S y  . 

 Some of the following problems refer to the state 
  cos / 2 sin / 2in z e z   , which is a state corresponding to 
spin-up along the direction   nu   in  fi g.  6.13  .  

         6.13*     Find the state   n  , which corresponds to spin down along   nu  . (Hint: this would 
be spin-up along   nu  .)  

      6.14     Prove that   n   is orthogonal to   n  .  
      6.15     Find the matrix representation of   ̂ nS   in the  z -basis.  
      6.16     Calculate   / 2nP S z  .  

      6.17     Calculate   / 2nP S x  .  
      6.18     Calculate the mean and standard deviation of measurements of   zS  , for a beam 

of electrons prepared in state   n  .  
      6.19*     Calculate the mean and standard deviation of measurements of   xS  , for a beam 

of electrons prepared in state   n  .  
      6.20*     A measurement of   zS   is performed on an electron prepared in state 

  1 3
2 2

z i z  . A measurement of   xS   is subsequently performed on the 

  
x

y

z

un

    
  Fig 6.13     An arbitrary unit vector in 3-D space.   

  SAz
SA-z     

  Fig 6.14     The experimental arrangement for problem 6.23.   
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same electron. What is the probability that the fi rst measurement returns   / 2 , 
and the second returns   / 2 ?  

      6.21     Calculate   ˆ ˆ,x zS S  .  

      6.22     Verify that measurements of   xS   and   zS   satisfy the appropriate indeterminacy 

relation for a beam of electrons prepared in the state   
1 3
2 2

z i z  .  

      6.23*     Show that the operator corresponding to the experimental setup shown in  fi g. 
 6.14   is equal to the identity operator. Thus, the spin state of the particles is not 
changed on propagation through this combination of spin analyzers. (Hint: you 
might want to look back at sec. 2.5.)       

            



         CHAPTER 7 

Angular Momentum and 
Rotation  

    We now know that spin is an intrinsic angular momentum associated with particles, and 
we’ve discussed some of the properties of spin-1/2 particles. In this chapter we’ll talk 
about other types of spin, and about angular momentum in general. We’ll also see how 
rotation is intimately linked with angular momentum. Before we get to that, however, 
we need to discuss an important property of observables whose corresponding opera-
tors commute. 

      7.1    COMMUTING OBSERVABLES   

 Consider the Hermitian operators   Â  and   B̂ , which have corresponding observables  A  
and  B , and assume that they commute:   ˆ ˆ, 0A B  . It is shown in complement 7.A that 
there exists a complete set of states     that are simultaneously eigenstates of both   Â  
and   B̂ . In other words, 

 ˆ ˆandA a B b  , (7.1)

where the   a  ’s are the eigenvalues of   Â  corresponding to the states    , and the   b  ’s are 
the eigenvalues of   B̂  corresponding to these same states. It is convenient to label eigen-
states by their corresponding eigenvalues; in this case there are two sets of eigenvalues, 
and we label the states by both. Making this notational change, we let   ,a b  , and 
then 

 ˆ ˆ, , and , ,A a b a a b B a b b a b  . (7.2) 

 The inverse of the above situation is also true: If   Â  and   B̂  do not commute, then they 
do not have a complete set of simultaneous eigenstates (although they may have 
some simultaneous eigenstates). This is proved in complement 7.A as well. We also 
show there that the observables  A  and  B  are compatible if   ˆ ˆ, 0A B  . For compatible 
observables, the indeterminacy principle allows the system to have well-defi ned values 
of both  A  and  B  simultaneously. A measurement of  B  will not change a previously 
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measured value for  A ; if  A  is measured again after the  B  measurement, its value will be 
the same. 

 Observables that do not commute are incompatible. Measurements performed on one 
of the observables can change measurements performed on the other. For example, in eq. 
(5.27) we showed that   45ˆ ˆ, 0HV  , so the observables   HV   and   45  are incompati-
ble. To see how this manifests itself, consider a measurement like that shown in  fi g.  3.4  . A 
measurement of   HV   is performed on a photon in an arbitrary polarization state, yielding 
the result  V . Next a measurement of   45  is performed, yielding the result +45. If these 
observables were compatible, a second   HV   measurement would yield  V  with 100% 
certainty. However, since they are incompatible, the   45  measurement alters the polariza-
tion state of the photon, so that the fi nal measurement does not yield  V  100% of the time.    

   7.2    ANGULAR MOMENTUM OPERATORS     

   7.2.1    Total Angular Momentum   

 We can combine the spin component operators to create a “spin vector” operator: 

 ˆ ˆ ˆ ˆ
x y y z zS S SxS u u u  . (7.3)

In addition to angular momentum associated with their spin, particles can have angular 
momentum associated with their motion, which in quantum mechanics we refer to 
as orbital angular momentum. The vector operator corresponding to orbital angular 
momentum is   L̂ . Unlike spin, which is purely quantum mechanical, orbital angular 
momentum has a classical counterpart. 

 The total angular momentum is 

 
ˆˆ ˆ

ˆ ˆ ˆ .x y y z zJ J Jx

J S + L

u u u
  (7.4)

The components of Ĵ    (and   L̂ ) satisfy the same commutation relations as the compo-
nents of   Ŝ : 

 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , ,x y z y z x z x yJ J i J J J i J J J i J  . (7.5)

In chapter 6 we demonstrated these relations for the special case of spin-1/2 particles, 
but they are true for any angular momentum operators. 

 The states   z   and   z   describe only the spin contribution to the total angular 
momentum, so they have no orbital angular momentum. If   ̂ 0L  , then   ˆĴ S , and

  ̂ ˆ,
2 2z zJ z z J z z  . (7.6)

A consequence of this is that for spin-1/2 the matrix representations of the components 
of Ĵ    in the  z -basis are then the same as the corresponding spin operators given in chapter 6:  
  ̂ / 2 ( , , )i iJ i x y z  .    
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   7.2.2    The   ˆ 2J   Operator   

 You might think that   Ĵ   would play an important role in quantum mechanics, as it does 
in classical physics. However, except as a notational convenience, we refer to   Ĵ   infre-
quently, because it does not correspond to an observable. The operators that make up 
the components of   Ĵ   do not commute [eq. (7.5)], and therefore they are incompatible 
observables. We cannot simultaneously measure values for all three components of an-
gular momentum for a single particle. Indeed, experiments 3, 4 and 5 in chapter 6 show 
us that we can only know one component at a time; measuring any other component 
disturbs the state of the particle. Furthermore, there are strong arguments to suggest 
that it’s not just that we can’t simultaneously  measure  the angular momentum compo-
nents, but that simultaneous values  don’t even exist . It doesn’t make sense to talk about 
a particle having a defi nite value for more than one component of its angular momen-
tum at a time. If this is the case, then clearly   Ĵ   does not correspond to an observable. 
The same goes for both   Ŝ  and   L̂ . 

 The problem with   Ĵ   is that its components are incompatible. To learn something 
about the total angular momentum, we need to fi nd some other operator that contains 
this information. This new operator needs to be compatible with (at least one of) the 
components of the angular momentum; this operator is   2Ĵ  :

  2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ
x y zJ J J JJ J  . (7.7)

In the problems you’ll prove that   2Ĵ   is Hermitian, and since we can measure   2J  , it is an 
observable.   2Ĵ   is also compatible with each of the components of   Ĵ  . To show this, let’s 
fi nd the commutator of   2Ĵ   and   ̂ zJ  . We’ll fi nd the following relation, which you’ll prove 
in the problems, useful:

  ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ, , ,AB C A B C A C B . (7.8)

Using this, the commutator of   2Ĵ   and   ̂ zJ   is

  

2 2 2 2

2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ, ,

ˆ ˆ ˆ ˆ ˆ ˆ, , ,

z x y z z

x z y z z z

J J J J J J

J J J J J J
0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

0 .

x x z x z x y y z y z y

x y y x y x x y

J J J J J J J J J J J J

i J J i J J i J J i J J

  (7.9)

The other components of   Ĵ   commute with   2Ĵ   as well. Because they are compatible, we 
can simultaneously measure   2J   and one component of   J  . Remember, however, that we 
cannot simultaneously determine more than one component of  J   at a time. 
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 For a spin-1/2 particle we can calculate the matrix representation of   2Ĵ  : 

 

2 2 2 2

2
2 2 2

2

2

2

ˆ ˆ ˆ ˆ

4
0 1 0 1 0 0 1 0 1 0
1 0 1 0 0 0 0 1 0 14

1 0 1 0 1 0
0 1 0 1 0 14

1 03 .
0 14

x y z

x y z

J J J J

i i
i i   (7.10)

From this equation, it is straightforward to see that both z    and   z   are eigenstates 
of   2Ĵ  , with eigenvalues   23 / 4 . 

 From here on, we will assume that all vectors and matrices corresponding to spin-
1/2 particles are written in the   ,z z    basis, unless otherwise indicated.     

   7.3    EIGENVALUES AND EIGENSTATES   

 We shouldn’t be too surprised that   z   and   z   are eigenstates of both   2Ĵ   and  ̂ zJ  , 
because these are compatible observables, and hence they are guaranteed to have 
simultaneous eigenstates. These are not the only eigenstates of   2Ĵ   and   ̂ zJ  , however. 
In complement 7.B we fi nd all of the allowed eigenvalues and eigenstates. There we 
fi nd that

  2 2ˆ , 1 ,j jJ j m j j j m  , (7.11) 

   ̂ , ,z j j jJ j m m j m  . (7.12)

The allowed values for  j  are 

   1 30, ,1, , 2,...
2 2

j   , (7.13)

and for a given value of  j , the allowed values for   jm   are

  , 1, 2,..., 2, 1,jm j j j j j j . (7.14)

Thus, for a given value of  j , there are   2 1j   allowed values for   jm  . For example:

  0j , 0jm ,  (7.15) 

   1
2

j , 1 1,
2 2jm  , (7.16) 

   1j , 1,0,1jm  . (7.17) 
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 We refer to  j  as the total angular momentum quantum number [the corresponding 
eigenvalue of   2Ĵ   is   21j j  ]. Likewise,   jm   is the quantum number corresponding to 
the  z -component of angular momentum (with corresponding eigenvalue   jm  ). 

 The square root of   2J   gives us the magnitude of the total angular momentum: 
  1J j j  . For a given  J , there are   2 1j   allowed values for   zJ  .   zJ   has a maxi-
mum value (for   jm j ) of   maxzJ j  . Notice that  J  is  always  greater than   maxzJ   (except 
for the case of 0 angular momentum,  0j  ), which means that the angular momentum 
can never be perfectly aligned with the  z -axis (the same is true of any other axis). This 
is a consequence of the indeterminacy principle. The components of angular momen-
tum satisfy indeterminacy relations, an example of which is 

  ˆ
2x y zJ J J   . (7.18)

If the expectation value of the  z -component of angular momentum is nonzero, there is 
uncertainty in the  x-  and  y -components. This means that the  x-  and  y -components of 
angular momentum cannot be 0, so the angular momentum can never be perfectly 
aligned with the  z -axis.   

   7.3.1    Raising and Lowering Operators   

 When dealing with angular momentum, it is often convenient to use the raising opera-
tor   ̂J   and the lowering operator   ̂J   , which are defi ned by

  ̂ ˆ ˆ
x yJ J iJ  . (7.19)

These operators are described in detail in complement 7.B, but for our purposes here 
we are mainly interested in their action on the angular momentum states:

  
1/ 2ˆ , ( 1) ( 1) , 1j j j jJ j m j j m m j m  , (7.20) 

   
1/ 2ˆ , ( 1) ( 1) , 1j j j jJ j m j j m m j m  . (7.21)

As you can see, the raising operator raises the quantum number corresponding to 
the  z -component of angular momentum by 1, while the lowering operator lowers it 
by 1. 

 What does   ̂J   do to a state whose  z -component of angular momentum is already 
maximized? A state with maximum  z -component of angular momentum has   jm j  ,  so 
eq. (7.20) yields

  1/ 2ˆ , ( 1) ( 1) , 0J j j j j j j j j  . (7.22)

The raising operator cannot raise the  z -component of angular momentum higher than 
its maximum value. You can also show that the lowering operator will not lower the 
 z -component of angular momentum beyond its minimum value.    
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   7.3.2    Spin   

 For a free particle   ˆĴ S , so   2 2ˆĴ S  . Equations (7.11) and (7.12) thus describe ei-
genvalues and eigenstates of   2Ŝ   and   ̂ zS  . For spin we use the spin quantum numbers  s  
and   sm  , so

  2 2ˆ , 1 ,s sS s m s s s m   , (7.23) 

   ̂ , ,z s s sS s m m s m   , (7.24)

with

  1 30, ,1, , 2,...
2 2

s   , (7.25) 

   , 1, 2,..., 2, 1,sm s s s s s s  . (7.26) 

 In the previous section we found that   z   and   z   are eigenstates of   2Ĵ  , with eigen-
value   23 / 4 . It thus follows that

  2 2 23 1 1ˆ 1
4 2 2

S z z z   , (7.27) 

   2 2 23 1 1ˆ 1
4 2 2

S z z z   . (7.28)

We already know that

  1ˆ
2zS z z  ,  

1ˆ
2zS z z   . (7.29)

Thus, we learn that   1/ 2s   for a spin-1/2 particle (in general we refer to particles as 
being spin- s ). It follows that

  1 1,
2 2

z , 1 1,
2 2

z   . (7.30)

Here the states are the same, they’re just expressed in different notation. 
 Particles with integer spin (  1, 2,s  ) are bosons, while those with half-integer spin 

(  1/ 2, 3 / 2,s  ) are fermions. These different types of particles have surprisingly dif-
ferent behaviors, which we’ll talk more about in sec. 13.5. 

 EXAMPLE 7.1 
 What are the allowed eigenstates of   2Ŝ   and   ̂ zS   for a spin-2 particle?

A spin-2 particle has   2s  , so

 2, 1,0,1, 2sm  . (7.31)
The eigenstates are thus

  2, 2 , 2, 1 , 2,0 , 2,1 , 2, 2    . (7.32) 
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 EXAMPLE 7.2 
 Express the eigenstates of   ̂ xS   for a spin-1/2 particle using the   , ss m   state notation. 

 In sec. 6.3 we found that the eigenstates of   ̂ xS   are

  1
2

x z z ,   1
2

x z z   . (7.33)

These states can be written as

  1 1,
2 2

1 1 1 1 1, , ,
2 2 2 22

x
x  

 (7.34)

 

   1 1,
2 2

1 1 1 1 1, , .
2 2 2 22

x
x  

 (7.35)

The subscripts  x  on the states indicate eigenstates of   ̂ xS  ; if there is no subscript, we 
assume that we’re talking about eigenstates of   ̂ zS  . Note that the eigenstates of   ̂ xS   are 
also eigenstates of   2Ŝ  .      

   7.4    SPIN-1   

 There are three eigenstates for spin-1 particles:   1,1  ,   1,0   and   1, 1  . Given this, what 
would happen if a beam of spin-1 particles passes through an SA z ? Since there are three 
allowed values for the  z -component of spin, in general the beam will be split in three, 
as shown in  fi g.  7.1  . The same result will be obtained if the beam passes through spin 
analyzers oriented in other directions (e.g., an SA x  or an SA y ).    

 Since   1,1  ,   1,0   and   1, 1   are eigenstates of   ̂ zS  , in this basis the matrix representa-
tion of   ̂ zS   is diagonal. You should be able to verify that

  

ψ

= hzS

= −hzS

zSA

=zS 0

1,1

1,0

−1, 1

     
  Fig 7.1     A beam of spin-1 particles is incident on a spin analyzer oriented along the  z -direction, 
SA z . 
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  ˆ ˆ ˆ1,1 1,1 1,1 1,0 1,1 1, 1
ˆ ˆ ˆ ˆ1,0 1,1 1,0 1,0 1,0 1, 1

ˆ ˆ ˆ1, 1 1,1 1, 1 1,0 1, 1 1, 1

1 0 0
0 0 0 .
0 0 1

z z z

z z z z

z z z

S S S

S S S S

S S S

 

 (7.36)

You’ll show in the problems that

  
0 1 0

ˆ 1 0 1
2 0 1 0

xS ,  
0 0

ˆ 0
2 0 0

y

i
S i i

i
 . (7.37)

In order to obtain the spin eigenstates along the  x - and  y -directions, we can diagonalize 
these matrices.    

   7.5    ROTATION   

 In chapter 4 we discussed the polarization rotation operator. Now we’re going to look 
at rotation more generally, and fi nd an operator that will rotate things besides just 
polarization.   

   7.5.1    Infinitesimal Rotations   

 Imagine that we have a spin-1/2 particle in state   z  , and we rotate the spin by an 
infi nitesimal angle   d   about the  x -axis, as shown in  fi g.  7.2  . Thus,

  ˆ , xR d zu   , (7.38)

where     is the rotated spin state.    
 We know that     can be written as a linear combination of   z   and   z  , because 

they form a basis. Since   d   is infi nitesimal,     will be only slightly different from the 
initial state   z  , so the   z   contribution will be small. To fi rst order in   d   we’d expect

  ˆ , xR d z z id c zu   , (7.39)

where  c  is a constant.   1    It’s not obvious at this point that the factor of – i  is needed, but if 
we allow  c  to be a complex number, there is no loss in generality in using this expression. 
Equation (7.39) implies that

   1.     For the moment we’re working with equations that are correct to fi rst-order in   d  , and eq. (7.39) is 
normalized to this order. 
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  ˆ ˆˆ , 1x xR d id Gu   , (7.40)

where   ˆ xG   is a dimensionless operator that “generates” rotation about   xu  . 
 In classical physics the generator of rotation is angular momentum, so it’s reasona-

ble to use the angular momentum operator as the generator of rotation in quantum 
mechanics. The generator of rotation about   xu   is thus   ̂ xJ  . Using a factor of     to make 
the units work, eq. (7.40) becomes

  ˆˆ ˆ, 1x x
iR d J du  . (7.41)    

   7.5.2    The Rotation Operator   

 Rotation through an angle   d   is equivalent to sequential rotations of     and   d  :

  ˆ ˆ ˆ, , ,x x xR d R d Ru u u   . (7.42)

Using eq. (7.41), this is

  
ˆˆ ˆ ˆ, 1 ,

ˆ ˆ ˆ, , .

x x x

x x x

iR d J d R

iR J R d

u u

u u

  (7.43)

Rearranging, we fi nd

  
ˆ ˆ, , ˆ ˆ ,x x

x x
R d R i J R

d
u u

u   . (7.44)

If we defi ne the derivative of an operator in the same way as the derivative of a func-
tion, that is,

  
x

y

z

ux

dθ

     

  Fig 7.2     Rotation by the angle   d   about the axis   xu  . 
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0

ˆ ˆ, , ˆlim ,x x
x

R R d R
d

u u
u   , (7.45)

then eq. (7.44) becomes

  ˆ ˆ ˆ, ,x x x
d iR J R
d

u u  . (7.46)

This is a straightforward differential equation to solve, and the solution is

  ˆ /ˆ , i Jx
xR eu  . (7.47)

The generator of rotation about an arbitrary axis   nu   is   ̂ ˆ
n nJ J u   , so

  ˆ /ˆ , .i Jn
nR eu   (7.48)

The properties of the polarization rotation operator that we noted in sec. 4.2 still hold 
for   ˆ , nR u  : the rotation operator is unitary, and   †ˆ ˆ, ,n nR Ru u  .   2    

 EXAMPLE 7.3 
 Compute   ˆ , zR zu  .

  ˆ /

0

0

0

/ 2

ˆ ,

ˆ1
!

/ 21
!

1
! 2

.

i J z
z

n
z

n
n

n
n

n

i

R z e z

Ji z
n

i z
n

i z
n

e z

u  

 (7.49)

The state   z   does not change on rotation about   zu  , it merely picks up an angle-
dependent phase. Physically, we wouldn’t expect the state to change; if you rotate some-
thing that’s pointing up along   zu   about the  z -axis, it will still be pointing up along   zu  .  

 You’ve probably noticed that we could have performed the computation in eq. (7.49) 
much more easily by simply replacing   ̂ zJ   by its eigenvalue:

  
ˆ /

/ 2 /

/ 2

ˆ ,

.

i Jz
z

i

i

R z e z

e z

e z

u  

 (7.50)

    2.     The factor of     –i   in eq. (7.39) is necessary to make   ˆ , zR u   unitary. 
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This does indeed work, but it  only  works because   z   is an eigenstate of   ̂ zJ  . Applying 
  ˆ ,R zu   to any state that is  not  an eigenstate of   ̂ zJ   is not so easy. For this, it’s usually 
easiest to rewrite the state as a linear combination of eigenstates of   ̂ zJ  , as shown in the 
following example. 

 EXAMPLE 7.4 
 Compute   ˆ / 2, zR xu  .

  ˆ/ 2 /

ˆ/ 2 /

/ 2 / 2 / / 2 / 2 /

/ 4 / 2

/ 4

/ 4

ˆ / 2,

1
2

1
2

1
2

1
2

.

i Jz
z

i Jz

i i

i i

i

i

R x e x

e z z

e z e z

e z e z

e z i z

e y

u  

 (7.51)

Spin up along the  x -axis, rotated by 90° about the  z -axis, yields spin up along the  y -axis, 
which makes sense physically, if you think about the geometry.      

   7.6    SPIN OF A PHOTON   

 The polarization rotation operator   ˆ pR  (chapter 4) rotates the polarization of a photon 
about its propagation direction, which is assumed to be   zu  . There’s nothing special 
about this operator, it’s just a special case of the rotation operator described in the last 
section. In other words, when applied to a photon polarization state

  

ˆ ˆ,

cos sin
.

sin cos

z p

HV

R Ru

  (7.52)

Notice that

  cos sin 11ˆ ,
sin cos 2

cos sin1
sin cos2

z
HV HV

HV

R L
i

i
i

u  
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  cos sin1
(cos sin )2

11
2

.

HV

i

HV
i

i
i i

e
i

e L

  (7.53)

In other words,   L   is an eigenstate of   ˆ , zR u  , with eigenvalue   ie  . The other po-
larization eigenstate is   R  , with eigenvalue   ie  . Using eqs. (7.48) and (7.53), we fi nd

  
ˆ /ˆ ,

.

i J z
z

i

R L e L

e L

u   (7.54)

In order for this to be true, it must be the case that

  ̂ zJ L L  . (7.55)

Thus,   L   is an eigenstate of   ̂ zJ  , with eigenvalue    . 
 While it is possible for photons to have orbital angular momentum (see ref.   [7.1]  ), 

ordinarily they do not, in which case   ˆˆ
z zJ S  . Equation (7.55) then means that   L   is an 

eigenstate of   ̂ zS  , with eigenvalue     (  1sm  ); it is also true that   R   is an eigenstate of   ̂ zS  , 
with eigenvalue     (  1sm  ).   3    Photons have   1s  , so they are spin-1 particles. 

 We’ve always treated photon polarization as a 2-D system, but spin-1 is a 3-D sys-
tem. If photons have a spin-1, what happened to the third eigenstate? Where is   0sm  ? 
It turns out that the   0sm   state is not allowed because the photon mass is 0. The elec-
tromagnetic fi eld is transverse, so the fi eld is perpendicular to the propagation direc-
tion, and the spin eigenstates can only be parallel or antiparallel to the propagation 
direction.   4         
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    3.     A clarifi cation about signs: remember that the defi nition of left-circular polarization is that you point 
your  left thumb toward the source , and your fi ngers curl in the direction that the polarization rotates. Thus, if 
you point your  right thumb along the propagation direction ,   zu  , your fi ngers will curl along the polarization 
rotation direction of a left-circularly polarized photon. This is why left-circularly polarized photons have 
positive helicity (spin parallel to motion,   1sm  ), while right-circularly polarized photons have negative 
helicity. 

    4.     For more details, see ref.   [7.2]  . 
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         7.8  PROBLEMS    
     
       7.1*     Show that

   ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ, , ,AB C A B C A C B  . (7.56)  

      7.2*     Show that   2Ĵ   is Hermitian.  
      7.3     Compute   2ˆ ˆ, xJ J   and   2ˆ ˆ, yJ J  .  

      7.4     Show that for a spin-1/2 particle, the operator   z z   is equivalent to the 
operator   ̂J  .  

      7.5     Write the operators   ̂ xJ   and   ̂ yJ   in terms of the operators   ̂J   and   ̂J  .  
      7.6     Find the matrix representations of   ̂J   and   ̂J   for a spin-1 particle, in the basis of 

the eigenstates of   ̂ zJ  .  
      7.7*     Find the matrix representations of   ̂ xS   and   ̂ yS   for a spin-1 particle, in the basis of 

the eigenstates of   ̂ zS  . You might fi nd the results of problems 7.5 and 7.6 useful.  
      7.8*     Find the eigenstates of   ̂ xS   for a spin-1 particle, in the basis of the eigenstates of   ̂ zS  .  

      7.9*     Find the eigenstates of   ̂ yS   for a spin-1 particle, in the basis of the eigenstates of   ̂ zS  .  
      7.10     A spin-1 particle is measured to have   yS  . What is the probability that a 

 subsequent measurement will yield   0zS  ?   zS  ?   zS  ?  
      7.11     A spin-1 particle is measured to have   0yS  . What is the probability that a 

 subsequent measurement will yield   xS  ?  
      7.12*     A beam of spin-1 particles is prepared in the state 

  1/ 3 2 1,1 1,0 2 1, 1i  . What is the probability that measure-
ments performed on the particles will yield   yS  ?  

      7.13*     A beam of spin-1 particles is prepared in the state 
  1/ 3 2 1,1 1,0 2 1, 1i  . Calculate the expectation values of   2S  , 
  yS   and   zS   for these particles.  

      7.14     Find the matrix representation of the operator   ˆ , zR u   for a spin-1/2 particle, 
in the   z  ,   z   basis.  

      7.15     Find the matrix representation of the operator   ˆ , yR u   for a spin-1/2 particle, 
in the   z  ,   z   basis.  

      7.16*     Starting from the state   z  , apply rotation operators to generate the 
state   n  , which is spin up along   nu  , as shown in  fi g.  7.3  . Show that 
  cos / 2 sin / 2in z e z  .     

      7.17     Calculate   ˆ , xR zu  .  

      7.18     Calculate   ˆ , 1,1zR u  ,   ˆ , 1,0zR u   and   ˆ , 1, 1zR u  .  
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      7.19     Calculate   ˆ / 2, 1,1xR u  .  

      7.20     Calculate   ˆ , 1,1xR u  .          

  
x

y

z

un

θ

φ
    

  Fig 7.3     The direction of     un  .   



    COMPLEMENT 7.A      

  Compatible Observables   

 In chapter 7 there were several assertions about compatible observables that were made 
without proof; the purpose of this complement is to prove them.   

   7.A.1    Commuting Operators Have a Simultaneous 
Eigenbasis   

 In sec. 7.1 we said that if the operators   Â  and   B̂ , which correspond to observables  A  
and  B , commute, they have a complete set of simultaneous eigenstates   ,a b   (an eigen-
basis). To prove this, start with the eigenstates   a   and   b  : 

  Â a a a  , (7.A.1) 

    B̂ b b b  . (7.A.2)

Since   Â  and   B̂  correspond to observables, we know that their eigenvalues are real, and 
that their eigenstates (both   a   and   b  ) form a complete, orthonormal set. Since the 
states   b   form a complete set, I can expand any of the states   a   as a linear combination 
of them:
   b

b

a c b   . (7.A.3)

Here we have assumed that the eigenvalues  b  are nondegenerate (there is a unique 
eigenstate corresponding to each eigenvalue).   5    

 From eq. (7.A.1) we know that

   ˆ 0A a a   . (7.A.4)

Using this, and eq. (7.A.3), we fi nd

    5.     For a proof that accounts for degeneracy, see ref.   [7.A.1]  . 
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ˆ ˆ

ˆ

0.

b
b

b
b

A a a A a c b

A a c b
  (7.A.5)

If we operate   B̂  on a single term in this expansion, and use the fact that   Â  and   B̂  com-
mute, we fi nd that

   
ˆ ˆˆ ˆ

ˆ ,

b b

b

B A a c b A a c B b

b A a c b
  (7.A.6)

where we’ve used eq. (7.A.2). Equation (7.A.6) tells us that   ˆ
bA a c b   is an eigen-

state of   B̂  with eigenvalue  b . Since the eigenstates of Hermitian operators are orthogo-
nal, the states   ˆ

bA a c b   are orthogonal, and hence all of the terms in the expansion 
of eq. (7.A.5) are orthogonal to each other. The only way that orthogonal terms can sum 
to 0 is if each of the terms is individually 0. This means

   

ˆ 0 ,

ˆ ,
ˆ ,

b

b b

A a c b

Ac b ac b

A b a b

  (7.A.7)

and the states   b   are eigenstates of both   Â  (with eigenvalue  a ) and   B̂  (with eigenvalue 
 b ). We’ve already said that the   b   states are complete, so   Â  and   B̂  have a complete set 
of simultaneous eigenstates. We can relabel the   b   states as   ,a b  , to explicitly indicate 
the eigenvalues of both operators.    

   7.A.2     Non-Commuting Operators Don’t Have a 
Simultaneous Eigenbasis   

 Now we would like to prove the inverse of the above: If   Â  and   B̂  do not commute, 
then they do not have a complete set of simultaneous eigenstates. We’ll do this by fi rst 
proving that if   Â  and   B̂  have a complete set of simultaneous eigenstates, then they must 
commute. 

 For notational simplicity let’s assume that the eigenstates of   Â  and   B̂  are    , and

   Â a   and  B̂ b   . (7.A.8)

We can expand the Hermitian operators   Â  and   B̂  as

   Â a   and  B̂ b   . (7.A.9)
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This means

   

,

ˆ ˆAB a b

a b

  (7.A.10)

The eigenstates of Hermitian operators are orthogonal, so   0  unless    , 
which means   ,  . We can substitute this into eq. (7.A.10), and do the sum 
over    , to obtain

   

,
,

ˆ ˆ

.

AB a b

a b
  (7.A.11)

Likewise, you can show that

   ˆB̂A a b   , (7.A.12)

so   ˆ ˆˆ ˆAB BA , and   ˆ ˆ, 0A B  . 

 Thus, if   Â  and   B̂  have a complete set of simultaneous eigenstates, they commute. 
From this it follows logically that if   Â  and   B̂  do not commute, they cannot have a com-
plete set of simultaneous eigenstates. They may have  some  simultaneous eigenstates, 
but these states cannot form a complete set.    

   7.A.3    Measurements of Compatible Observables   

 One of the key assertions we made in chapter 7 was that observables whose corre-
sponding operators commute are compatible. By this we mean that it is possible to 
obtain values for both observables simultaneously. For instance, suppose we measure 
 A  and get the value  a , and then measure  B  and get the value  b . If these observables 
are compatible, then the second measurement shouldn’t change the fi rst; if I perform 
another measurement of  A , I should once again obtain the value  a.  

 To see that this is the case, we note that compatible observables have corresponding 
Hermitian operators that commute, so they have simultaneous eigenstates   ,a b  , where

   ˆ , ,A a b a a b    and   ˆ , ,B a b b a b  . (7.A.13)

For simplicity, we’ll assume that the eigenvalues are non-degenerate (the eigenstates 
are uniquely specifi ed by the two eigenvalues  a  and  b ).   6    The states   ,a b   are a complete 
set, so an arbitrary state can be written as a linear combination of them as

    6.     A generalization for degenerate eigenvalues can be found in ref.   [7.A.2]  . 



 144   •  Q U A N T U M  M E C H A N I C S

   ,
,

,a b
a b

c a b   . (7.A.14)

This state is normalized if

   
2

, '
, '

1a b
a b

c   . (7.A.15) 

 Suppose now that a system is prepared in the state    , and that we make a measure-
ment of  A  which yields the value  a . By postulate III(b) (sec. 5.2), after the measurement 
the system is left in an eigenstate corresponding to the eigenvalue  a . However, this does 
not uniquely specify the state, since we have no information about  b . In general the 
system will be left in a state with contributions from all possible values of  b . Thus, after 
the measurement system is left in state    , with a fi xed value of  a , but a superposition 
of many  b  values:

   ,
2

,

1 ,a b
b

a b
b

c a b

c

  . (7.A.16)

The square root factor in front of the sum normalizes    . This generalizes postulate 
III(b). 

 Now a measurement of  B  is made, but prior to this measurement system is in state 
   , not    . This measurement returns the result  b , and after the measurement the 
state     is collapsed to the state    , which is an eigenstate corresponding to the 
eigenvalue  b :

   ,2
,

1 ,a b

a b

c a b
c

  . (7.A.17)

Once again, the square root factor normalizes the state. 
 Finally, we repeat the measurement of  A , now with the system being in-state    . 

But     is an eigenstate of   Â , with eigenvalue  a :

   

,2
,

,2
,

1ˆ ˆ ,

1 ,

,

a b

a b

a b

a b

A c A a b
c

c a a b
c

a

  (7.A.18)

so the measurement must yield the value  a . Thus,  A  and  B  are compatible observables, 
because the  B  measurement in the middle does not change the measured value of  A . 

 It is also possible to show that, for compatible observables, the measurement order 
does not affect the probability of measurements. The joint probability of measuring  a  
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and  b , for a system prepared in an arbitrary state    ,   ,P a b  , is the same, whether 
the measurement of  A  is performed before the measurement of  B , or vice versa.   7    

 The above arguments are all based on the fact that the states   ,a b   are a complete set 
of simultaneous eigenstates of   Â  and   B̂ , which exist only if   Â  and   B̂  commute. If   Â  
and   B̂  do not commute the argument breaks down, and  A  and  B  are not compatible 
observables.         

   7.A.4  References  

    [7.A.1]  L. E. Ballentine,  Quantum Mechanics, A Modern Development  (World Scientifi c, Singa-
pore, 1998), pg. 24. 

  [7.A.2]  C. Cohen-Tannoudji, B. Diu, and Franck Laloë,  Quantum Mechanics  (Wiley, New York, 
1977), Sec. III.C.6.    

    7.     For a proof of this, see ref.   [7.A.2]  .  



     COMPLEMENT 7.B      

  Eigenvalues and Eigenstates 
of Angular Momentum   

 In this complement we’ll derive the eigenvalues and simultaneous eigenstates of the 
angular momentum operators   2Ĵ   and   ̂ zJ  . 

 From sec. 7.2 we know that the commutation relations between the angular momen-
tum components are

   ˆ ˆ ˆ,x y zJ J i J  ,  ˆ ˆ ˆ,y z xJ J i J  ,  ˆ ˆ ˆ,z x yJ J i J  , (7.B.1) 

and that

   2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ
x y zJ J J JJ J   . (7.B.2)

Furthermore, all of the operators   2Ĵ  ,   ̂ xJ  ,   ̂ yJ   and   ̂ zJ   are Hermitian, and correspond to ob-
servables. These pieces of information are enough to uniquely determine the eigenval-
ues and eigenstates of angular momentum. 

 Since the angular momentum component operators do not commute with each other, 
they do not correspond to compatible observables, and we can only determine one of 
them at a time; it is traditional to choose   zJ  .   2Ĵ   and   ̂ zJ   correspond to observables, so 
their eigenvalues are real. We showed in sec. 7.2 that   2Ĵ   and   ̂ zJ   commute, so they are 
compatible, and have a complete set of simultaneous eigenstates. For the moment we’ll 
refer to these eigenstates as   ,m  , where

   2 2ˆ , ,J m m  , (7.B.3) 

    ̂ , ,zJ m m m  . (7.B.4)

We’ve pulled out the factors of     and   2  because     has units of angular momentum; the 
constants     and  m  are thus real, and dimensionless.   
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   7.B.1    Limits on the Eigenvalues   

 Using eqs. (7.B.2)–(7.B.4), the expectation value of   2J   for state   ,m   is

   

2 2

2 2 2

2 2 2 2

ˆ, ,
ˆ ˆ ˆ, , , , , ,
ˆ ˆ, , , , .

x y z

x y

m J m

m J m m J m m J m

m J m m J m m

  (7.B.5)

Looking at the fi rst term in this sum

   

2 †

†

ˆ ˆ ˆ, , , ,

ˆ ˆ, ,

0 ,

x x x

x x

m J m m J J m

m J J m   (7.B.6)

where we’ve used the facts that   ̂ xJ   is Hermitian, and that the inner product of a vector 
with itself is a positive real number. Similarly,

   2ˆ, , 0ym J m  . (7.B.7)

Combining eqs. (7.B.5)–(7.B.7), we see that

   2m  . (7.B.8)

Since  m  is real, this implies that     is positive. Furthermore, for a fi xed value of    ,  m  is 
bounded; it has maximum and minimum values such that

   min maxm m m  . (7.B.9)    

   7.B.2    The Raising and Lowering Operators   

 Consider the operators   ̂J   and   ̂J  , defi ned by

   ̂ ˆ ˆ
x yJ J iJ  . (7.B.10)

They both commute with   2Ĵ  , since

   2 2ˆ ˆ ˆ ˆ, , xJ J J J 2

0

ˆ ˆ, yi J J
0

0  . (7.B.11)
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Their commutators with   ̂ zJ   are

   

ˆ ˆ ˆ ˆ ˆ ˆ, , ,

ˆ ˆ

ˆ ˆ

ˆ .

z z x z y

y x

x y

J J J J i J J

i J i i J

J iJ

J

 . (7.B.12)

This means that

   
ˆ ˆ ˆ ˆ ˆ ˆ,

ˆ ,

z z zJ J J J J J

J
  (7.B.13)

and so

   
ˆ ˆ ˆ ˆ ˆ

ˆ ˆ .
z z

z

J J J J J

J J
  (7.B.14)

This is a relationship that we’ll fi nd useful shortly. Another useful relationship is

   
2 2

2 2

2 2

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ,

ˆ ˆ ˆ .

x y x y

x y y x x y

z y x

z z

J J J iJ J iJ

J J i J J J J

J J i J J

J J J

  (7.B.15)

Similarly, you can show that

   2 2ˆ ˆ ˆ ˆ ˆ
z zJ J J J J  . (7.B.16) 

 What happens when we apply   ̂J   to one of our eigenstates? We know that we obtain 
a new state:

   ̂ ,J m  , (7.B.17)

but what are its properties? Let’s learn something about     by applying   ̂ zJ   to it:

   

ˆ ˆ ˆ ,
ˆ ˆ ,

ˆ ,
ˆ1 ,

1 ,

z z

z

J J J m

J J m

J m m

m J m

m

  (7.B.18)
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where we’ve used eqs. (7.B.4), (7.B.14), and (7.B.17). Equation (7.B.18) says that     
is an eigenstate of   ̂ zJ  , with eigenvalue   1m  . In other words

   ˆ , , 1J m c m  , (7.B.19)

where   c   is a constant that you’ll determine in problem 7.B.3. Because   ̂J   raises the 
value of  m  by 1, it’s referred to as the raising operator. In problem 7.B.4 you’ll show 
that

   ̂ , , 1J m c m  , (7.B.20)

so   ̂J   is called the lowering operator.    

   7.B.3    Allowed Eigenvalues   

 By eq. (7.B.9) we know that there is a maximum value of  m , and it is customary to set 
  maxm j . Equation (7.B.19) suggests that applying   ̂J   to   , j   would raise  j  to  j +1, 
but that can’t happen because we know that  j  is the maximum allowed value. In order 
to ensure that we don’t have a contradiction, it is necessary that

   ̂ , 0J j  . (7.B.21)

Similarly,   ̂J   cannot be allowed to lower  m  below   minm   , so

   min
ˆ , 0J m . (7.B.22)  

 Using eqs. (7.B.3), (7.B.4), (7.B.16), and (7.B.21), we fi nd

   

2 2

2 2

2

ˆ ˆ ˆ ˆ ˆ, , ,

ˆ ˆ , , ,

0 1 , .

z zJ J j J J J j

J J j j j j

j j j

  (7.B.23)

This means that

   1j j  . (7.B.24)

In a similar fashion, eqs. (7.B.3), (7.B.4), (7.B.15), and (7.B.22) show that

   

2 2
min min

2 2
min min min min

2
min min min

ˆ ˆ ˆ ˆ ˆ, , ,

ˆ ˆ , , ,

0 1 , ,

z zJ J m J J J m

J J m m m m

m m m

  (7.B.25)
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so

   min min 1m m  . (7.B.26)

Comparing eqs. (7.B.24) and (7.B.26) indicates that   minm j  . 
 In light of the fact that   1j j  , we can label the eigenstates by  j , rather than    . 

Also, since the value of  m  is associated with  j , it is often written as   jm  . Thus, eqs. 
(7.B.3) and (7.B.4) become

   2 2ˆ , 1 ,j jJ j m j j j m  , (7.B.27) 

    ̂ , ,z j j jJ j m m j m  , (7.B.28)

where   jj m j . 
 Assume that we fi x the value of  j , and start in the state  ,j j   , which has the lowest 

allowed value of   jm  . We generate the next allowed value for   jm   by applying   ̂J   to this 
state. From eq. (7.B.19):

   ̂ , , 1J j j c j j  , (7.B.29)

so   1j   is an allowed value for   jm  . We continue applying   ̂J   to the new states that we 
generate, obtaining more allowed values for   jm  . Eventually we must reach the state 
  ,j j  , at which point   ̂ , 0J j j  , and we’ve generated all the allowed states for a 
given value of  j . This process indicates that the allowed values for   jm   are

   , 1, 2,..., 2, 1,jm j j j j j j . (7.B.30)

Notice that the difference between  j  and – j  must be an integer, so

   
int ,

2 int ,
int .
2

j j
j

j

  (7.B.31)

The allowed values for  j  are thus

   
1 30, ,1, , 2,...
2 2

j   (7.B.32)

For a given value of  j , there are   2 1j   allowed values for   jm   . Some examples are:

   0j  , 0jm  ,  (7.B.33) 

    1
2

j  , 1 1,
2 2jm    , (7.B.34) 
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    1j  , 1,0,1jm    , (7.B.35) 

    
3
2

j  , 
3 1 1 3, , ,
2 2 2 2jm   . (7.B.36)    

    7.B.4    Problems   

           7.B.1     Show that   †ˆ ˆJ J   and   †ˆ ˆJ J  .  

      7.B.2     Show that   ˆ ˆ ˆ, 2 zJ J J   .  

      7.B.3*     Show that

  
1/ 2ˆ , ( 1) ( 1) , 1j j j jJ j m j j m m j m   (7.B.37)  

  Do this by calculating the matrix elements   ˆ ˆ, ,j jj m J J j m  . You will fi nd 

eqs. (7.B.16), and (7.B.19), and problem 7.B.1 useful.  
      7.B.4*     Verify eq. (7.B.20). Then, using steps similar to problem 7.B.3, show that 

  1/ 2
( 1) ( 1)j jc j j m m  .   
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         CHAPTER 8 

Two-Particle Systems 
and Entanglement  

    Up to now we’ve been talking about the quantum mechanics of individual parti-
cles. In this chapter we’ll discuss the quantum mechanics of systems consisting 
of two particles. There are certain behaviors that two-particle systems exhibit that 
have no one-particle analog. In particular, we’ll see that the states of two particles 
can become “entangled” with each other. Entanglement is a purely quantum me-
chanical effect. Experiments using entangled states can be used to prove that any 
theory based on the usual assumptions of classical physics  cannot  explain certain 
observed phenomena, while quantum mechanics can. You can perform such an 
experiment in lab 5. 

      8.1    PAIRS OF PHOTONS     

   8.1.1    Two-Photon States and Operators   

 Consider the process used in the laboratory experiments, spontaneous parametric 
downconversion, which is described in lab 1, and pictured in  fi g.  8.1  . In this process 
a single photon from a pump laser is split into two photons, called the signal and the 
idler, in a crystal. The signal and the idler emerge from the crystal at essentially the 
same time, and their frequencies and momenta are correlated. For more details about 
the properties of downconverted photon pairs, see lab 1. Here we are interested in the 
polarizations of the downconverted photons. For the type-I downconversion used in the 
labs, the polarization of the two downconverted photons are the same, and orthogonal 
to that of the pump.    

 In order to specify the state of this system we need to specify the states of both of 
the downconverted photons. For many experiments we don’t worry about this detail, 
because the idler photon is used merely to herald the presence of the signal photon. 
Now, however, we are going to start thinking about the complete polarization state of 
the two-photon system. 
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 In order to describe the polarization state of the two-photon system shown in  fi g. 
 8.1  , the polarization of each photon must be specifi ed. This polarization state is

   , s iH H H H   . (8.1) 

 The symbol     denotes the direct product, which combines state vectors in different 
Hilbert spaces (one for each particle) to create a new vector that specifi es the state 
of the two-particle system in an enlarged Hilbert space. We will usually use the nota-
tion   ,H H  , but there are several different notations that specify this same state; these 
include

   
,

.
s iH H H H

HH
  (8.2) 

 We will fi nd the notation   
s iH H   to be frequently useful, because it makes very clear 

which particle is in which state. 
 If we place a half-wave plate in the signal beam of  fi g.  8.1  , and orient it so that the 

polarization of the signal beam is rotated to +45°, the state of the two-photon system 
would then be   45, H  . This state can be rewritten as

   

45, 45

1
2

1
2

1 , , .
2

s i

s s i

s i s i

H H

H V H

H H V H

H H V H

  (8.3) 

  

ωp

ωi

ωs

    

  Fig 8.1     Spontaneous parametric downconversion. One pump photon at angular frequency 
  p  is converted into signal and idler photons at angular frequencies   s  and   i   inside of a 
crystal. The polarizations of the signal and idler photons are orthogonal to that of the pump.   
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 If the polarization state of the idler beam is then modifi ed using a quarter-wave plate to 
change it to right-circular, the state becomes   45, R  :

   

45, 45

1 1
2 2

1
2
1 , , , , .
2

s i

s s i i

s i s i s i s i

R R

H V H i V

H H i H V V H i V V

H H i H V V H i V V

  (8.4) 

 The four states appearing in the last line of eq. (8.4) are the most commonly used basis 
states for the 4-dimensional space describing the polarizations of two photons. 

 We can also compute inner products of two-particle states. For example, 

    

, 45 , 45

45

1
2 2

.
2

s i s i

s s i i

V R H V R H

V R H

i

i

  (8.5) 

 When computing inner products, the state vectors corresponding to each particle are 
combined. Thus, in eq. (8.5) the answer is the product of two inner products, one for 
the signal and one for the idler. 

 Operators can act in the subspace of one particle, in the subspace of the other, or in 
the entire space of both particles. For example, consider the  HV -polarization operator 
  ˆ HV   defi ned in sec. 5.1;   H   is an eigenstate of this operator with eigenvalue +1, and 
  V   is an eigenstate with eigenvalue –1. We can defi ne   ˆ s

HV   which acts only on the state 
of the signal photon, and   ˆ i

HV   which acts only on the state of the idler photon. Opera-
tors corresponding to different particles always commute, for example, 

    ˆ ˆ, 0s i
HV HV  . (8.6) 

 We can also defi ne operators such as   ˆ ˆ ˆsi s i
HV HV HV  , which acts on the state of 

both photons, as shown in example 8.1. 

 EXAMPLE 8.1 
 Calculate the action of the operators   ˆ s

HV  ,   ˆ i
HV  , and   ˆ si

HV   on the state   , 45V  . 

    

ˆ ˆ, 45 45

1 45

, 45 ,

s s
HV HV s i

s i

V V

V

V

  (8.7) 
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ˆ ˆ, 45 45

1ˆ
2

1
2

45

, 45 ,

i i
HV HVs i

i
HVs i i

s i i

s i

V V

V H V

V H V

V

V

  (8.8) 

    

ˆ ˆ ˆ, 45 , 45

ˆ ˆ 45

1 45

, 45 .

si s i
HV HV HV

s i
HV HVs i

s i

V V

V

V

V

  (8.9)     

   8.1.2    Probabilities   

 Postulate III(b) (sec. 5.2) tells us how to determine the probability of a measurement 
result. Now let’s formulate the probability postulate in a slightly different way. 

 We want to make measurements of observable  O . The eigenvalues and eigenstates 
of the corresponding Hermitian operator   Ô  are given by

   ˆ n n nO   . (8.10) 

 We’ll assume that the eigenvalues are nondegenerate. Postulate III(b) tells us that for a 
system prepared in state    , the probability of obtaining   n  as a measurement result is

   

2

ˆ

ˆ ,

n n

n n

n n

n

n

P

P

P

  (8.11) 

 where   ˆ
n

P   is the projection operator onto the state   n  . Thus, the probability of obtain-
ing a particular eigenvalue as a measurement result can be written as the expectation 
value of the projection operator onto its corresponding eigenstate. This is another way 
to formulate Born’s rule. 
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 To this point we have been explicitly indicating that probabilities are conditioned 
upon the state preparation. This notation becomes increasingly cumbersome, however, 
when talking about probabilities of two or more quantities. So, we’re going to change 
this notation. We will not explicitly indicate that measurement probabilities are condi-
tioned on the state preparation, unless it’s absolutely necessary to avoid confusion. The 
state preparation will be assumed, and we’ll use the notation

   n nP P   . (8.12) 

 Let’s look at some examples.  

 EXAMPLE 8.2 
 Calculate the probability that the signal photon will be measured to have vertical po-
larization, and the idler photon will be measured to have horizontal polarization, on a 
system prepared in the state   , 45R  . 

 We are interested in the joint probability that both measurements yield particular 
results:   ,s iP V H  . The projection operator onto the state corresponding to this 

 measurement is   ,
ˆ , ,V Hs iP V H V H  , so the probability is given by

   

,

2

2

2

ˆ,

, 45 , , , 45

, 45 ,

45

1
2 2

1 .
4

s i V Hs i

s s i i

P V H P

R V H V H R

R V H

R V H

i

  (8.13) 

 EXAMPLE 8.3 
 Calculate the probability that the idler photon will be measured to have horizontal po-
larization, on a system prepared in the state   , 45R  . 

 We are interested in the probability   iP H  . The projection operator onto the eigen-

state corresponding to this measurement is   ˆH i iiP H H   , so the probability is given 
by
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ˆ

, 45 , 45

45 45

45 45

1 11
2 2

1 .
2

ii H

i i

s i i i s i

s s i i i i

P H P

R H H R

R H H R

R R H H   (8.14) 

 This probability is independent of any measurement performed on the signal beam.  

 As we learned in sec 1.1, the conditional probability that a measurement of an 
observable  A  yields  a , given that a measurement of  B  yields  b , is written as   P a b  . 
How do we determine   P a b  ? We start with eq. (1.27), which says

   ,P a b P a b P b   . (8.15) 

 Rearranging this, we obtain

   
,P a b

P a b
P b

  , (8.16) 

 which is Bayes’ formula. 

 EXAMPLE 8.4 
 Calculate the probability that the signal photon will be measured to have vertical po-
larization, given that the idler photon is measured to be horizontally polarized, for a 
system prepared in the state   , 45R  . 

 We are interested in the probability   |s iP V H  . Using eq. (8.16), this is given by

   
,

| s i
s i

i

P V H
P V H

P H
  . (8.17) 

 The probabilities on the right-hand side of this equation were determined in examples 
8.2 and 8.3, and they yield

   1/ 4 1|
1/ 2 2s iP V H   . (8.18)        
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   8.2    ENTANGLED STATES   

 Now that we have described the basic mathematics of two-particle systems, we can 
discuss a very important class of two-particle states, entangled states. Indeed, entangle-
ment is one of, if not  the  most important feature of quantum mechanics that sets it apart 
from classical physics. 

 Suppose that we use the downconversion source shown in  fi g.  8.2  , instead of the 
simpler one of  fi g.  8.1  . As described in lab 1, for the downconversion process to be effi -
cient, the propagation directions and polarizations of the pump, signal, and idler photons 
must be properly oriented with respect to the crystal axes. For the source in  fi g.  8.2   there 
are two crystals sandwiched together, with their orientations rotated by 90° with respect 
to each other. One crystal converts vertically polarized pump photons into horizontally 
polarized signal and idler photons, while the other converts horizontally polarized pump 
photons into vertically polarized signal and idler photons. If the pump is polarized at 
45°, each of these processes is equally likely. If the crystals are thin enough, observers 
detecting the signal and idler photons have no information about which crystal a given 
photon was produced in. If care is taken, an observer performing a measurement on the 
signal (or idler) photon would have absolutely no way of distinguishing between a hori-
zontally or vertically polarized photon, short of actually performing a polarization meas-
urement. If the photons are indistinguishable in this way, the polarization state is a 
superposition of the two possible states generated by the downconversion process:

   1 , ,
2

H H V V        . (8.19) 

 In sec. 3.7, when discussing single-photon interference, we said that in order to 
explain the data it was necessary for the photon to take both paths through the interfer-
ometer, not one or the other. Likewise, we will soon see that in order to explain experi-
ments performed using the source of  fi g.  8.2  , it is necessary to interpret the state of eq. 
(8.19) as meaning that the photons are in  both  states   ,H H   and   ,V V   at the same time, 
not as meaning that they are in one state or the other. In other words, the photons are in 
a superposition of these states, not a mixture (a term we will defi ne more fully below). 

  

ωp

ωi

ωs

    

  Fig 8.2     A source that uses two crystals, whose axes are rotated 90° with respect to each other, 
to produce polarization entangled photons. The pump is polarized at +45°, and produces 
signal and idler photons in the polarization entangled state of eq. (8.19).   
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 Above we said that if we knew the state of particle  A  to be   A A , and the state of 
particle  B  to be   B B , then the state of the total system would be

   ,A B A BA B  . (8.20) 

 Each pair of basis states of the individual particles can be combined to create an al-
lowed state of the total system. Such states are called product states, and these product 
states form a basis for the combined system. These states are also pure states, which 
means they are fully described by a state (e.g., ket) vector. 

 However, it is not possible to write every allowed state of the combined system as a 
product state. The state of eq. (8.19) is an example of this—it cannot be factorized into 
separate states corresponding to the two particles, so it is not a product state (in prob-
lem 8.5 you’ll prove this). It doesn’t make sense to talk about the signal or idler photons 
as “being” in states by themselves.   1    States of the combined system which cannot be 
written as product states are known as entangled states. Entangled states are inherently 
states of the combined system. 

 Let’s examine the probabilities of various measurements performed on photons 

prepared in the state     of eq. (8.19). 

 EXAMPLE 8.5 
 For a two-photon system prepared in the state     of eq. (8.19), determine the prob-
abilities of obtaining: (a) the signal photon is measured to be horizontally polarized, (b) 
the signal photon is measured to be horizontally polarized, given that the idler photon 
is found to have horizontal polarization. 

 (a) The probability that the signal photon is measured to be horizontally polarized is

  

ˆ

1 1, , , ,
2 2

1
2
1
2
1 .
2

s Hs

s s

s s s ss i s i s i s i

i i

P H P

H H V V H H H H V V

H H H V H V H H H H V V

H H

   (8.21) 

 (b) The probability that the signal photon is measured to be horizontally polarized, 
given that the idler photon is found to have horizontal polarization is   |s iP H H  . By 
eq. (8.16) we can write this as

   1.     At least not pure states; the individual particles are not in states described by a ket vector. 



8:  TWO-PARTICLE SYSTEMS AND ENTANGLEMENT  •   161 

   
,

| s i
s i

i

P H H
P H H

P H
  . (8.22) 

 The calculation of   iP H   proceeds in the same manner as the calculation of   sP H   
above, except that the projection operator projects onto the idler, as opposed to the 
signal. You should be able to verify that the result is

   
1
2iP H   . (8.23) 

 The probability appearing in the numerator of eq. (8.22) is

     

,
ˆ,

1 1, , , , , ,
2 2

1 , , , , , ,
2
1 , , , , , , , ,
2
1 .
2

s i H Hs iP H H P

H H V V H H H H H H V V

H H V V H H H H H H V V

H H H H V V H H H H H H H H V V

  (8.24) 

 Substituting eqs. (8.23) and (8.24) into eq. (8.22) yields

   1/ 2| 1
1/ 2s iP H H    . (8.25) 

 Part (a) of example 8.5 tells us that for photons in the entangled state of eq. (8.16), 
measurements of   s

HV   yield perfectly random results: the signal photon is measured to 
have horizontal polarization half of the time (and consequently vertical polarization the 
other half). The results for the idler are the same: It will be measured to be horizontally 
polarized half of the time, and vertically polarized the other half. 

 However, part (b) of example 8.5 tells us that if the idler is found to be horizontally 
polarized, the signal will be measured to be horizontally polarized with 100% certainty. 
The ordering of the measurements doesn’t matter: If the signal is found to be horizontal, 
so will the idler. You can perform a similar calculation to show that if the idler is meas-
ured to be vertically polarized, the signal will be vertically polarized as well. Simply by 
looking at the form of the state     you could probably guess that it would yield these 
probabilities, however, it’s wise to explicitly calculate them to validate your intuition. 

 We learn the following: Despite the fact that the measured individual polariza-
tions are purely random, the results of the measurements are perfectly correlated. 
Neither photon has a well-defi ned polarization, yet if the polarization of one photon 
is known from a measurement, the polarization of the other is determined, at least in 
the  HV -basis. Example 8.6 illustrates that this fact is true for measurements in other 
bases as well. 
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 EXAMPLE 8.6 
 For a two-photon system prepared in the state     of eq. (8.19), determine the prob-
ability that the signal photon is measured to be polarized along +45°, given that the 
idler photon is found to be polarized along this same direction. 

 We want to fi nd   45 | 45s iP  , which is given by

   
45 , 45

45 | 45
45
s i

s i
i

P
P

P
  . (8.26) 

 The joint probability in the numerator is

  

45 , 45

2

2

2

ˆ45 , 45

1 1, , 45, 45 45, 45 , ,
2 2

1 , 45, 45 , 45, 45
2
1 45 45 45 45
2

1 1 1 1 1
2 2 2 2 2
1 .
2

s i s i

s s i i s s i i

P P

H H V V H H V V

H H V V

H H V V
  

 The probability in the denominator is

  

45
ˆ45

1 1, , 45 45 , ,
2 2

1 45 45 45 45
2
1 1 1 1 10 0
2 2 2 2 2
1 .
2

i i

i i

s i i s i i i i s i i s

P P

H H V V H H V V

H H V V H H V V
  

 Therefore

   1/ 245 | 45 1
1/ 2s iP    . (8.29) 

(8.27)

(8.28)
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 In the problems you’ll generalize example 8.6 to show that for pairs of photons 
prepared in state    , the polarizations of the two photons are perfectly correlated, for 
measurements in  any  elliptical polarization basis. Classical physics cannot explain 
such strong polarization correlations, as we’ll soon see.    

   8.3    MIXED STATES   

 In the previous section we stressed that the state     of eq. (8.19) must be interpreted 
as being in both states   ,H H   and   ,V V   at the same time. How do we know this? Why 
can’t it mean that the system is randomly in either state   ,H H   or state   ,V V  ? The 
answer is that if the system is randomly in one state or the other, the measured prob-
abilities are different than if the system is in both states at the same time. 

 Before showing that this is the case, we need to formalize our description of the 
“either-or” state. The entangled state     is a pure state; it is a superposition of two states 
that is expressed as a state vector. The state which describes a system as being either in 
state   ,H H   or state   ,V V   is called a mixed state, or a mixture. It is not pure, because 
it cannot be described by a single state vector—the system is randomly prepared in one 
of two possible states. 

 This state preparation randomness represents a lack of knowledge in a classical 
sense—like a coin fl ip, there’s nothing intrinsically quantum mechanical about it. For 
example, to produce a state which is a mixture of   ,H H   and   ,V V  , I could randomly 
orient the polarization of the pump beam to produce photons in either one of these states. 

 The best way to deal with mixed states in quantum mechanics is to use the density 
operator   ̂   (also referred to as the density matrix or the state operator). The density 
operator is a generalized quantum state. It can describe both pure and mixed states, 
whereas the state vectors we have been using so far can describe only pure states. A 
description of the density operator is given in complement 8.A. In the discussion here 
we won’t use the density operator, but instead use the fact that measured probabilities 
are conditioned on the state that the system is prepared in. 

 The probability that we will measure   A a  for a system prepared in state   1   is 
  1P a  , and the probability that we will obtain   A a  for a system prepared in state 

  2   is   2P a  . The total probability of measuring   A a  is

   1 1 2 2P a P a P P a P   . (8.30) 

 This is simply the classical rule that probabilities for different possibilities add to give 
the total probability. If there are many different states that the system could be prepared 
in, we’d modify eq. (8.30) by including a term in the sum for each possible state. For 
further discussion, see ref. [8.1]. 

 We can use eq. (8.30) to calculate the probabilities of measurements for systems 
prepared in mixed states. For example, you’ll show in the problems that for a mixed 
state containing 50%   ,H H   and 50%   ,V V  ,   | 1s iP H H  . Measurements in the 
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horizontal/vertical basis of each photon are perfectly correlated for this mixed state, 
just as we found they were for the entangled state     in example 8.5. Measurements 
in this basis cannot distinguish photons being in the entangled state or the mixed state. 
However, the next example shows that there  are  measurements that can distinguish 
these possibilities. 

 EXAMPLE 8.7 
 For a two-photon system prepared in an equal mixture of states   ,H H   and   ,V V  , de-
termine the probability that the signal photon is measured to be polarized along +45°, 
given that the idler photon is found to be polarized along this same direction. 

 We want to fi nd   45 | 45s iP  . We can determine it the same way we did in exam-
ple 8.6, by using eq. (8.26); we just need to calculate the probabilities using the mixed 
state rather than the entangled state. 

 An equal mixture means   , 1/ 2P H H   and   , 1/ 2P V V  . Applying eq. (8.30) 
to the numerator of eq. (8.26), we fi nd

       

45 , 45 45 , 45

45 , 45 45 , 45 , ,

45 , 45 , ,

1 1ˆ ˆ, , , ,
2 2

1 , 45, 45 45, 45 ,
2

1 , 45, 45 45, 45 ,
2

1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2

s i s i

s i

s i s i

P P H H P H H

P V V P V V

H H P H H V V P V V

H H H H

V V V V

1 .
4

  (8.31) 

 Applying eq. (8.30) to the denominator of eq. (8.26), we fi nd

      

45 45

45 45 , , 45 , ,

1 1ˆ ˆ, , , ,
2 2

1 145 45 45 45
2 2
1 1 1 1 1
2 2 2 2 2
1 .
2

i i i

i i

i i i i s s i i i i s s

P P H H P H H P V V P V V

H H P H H V V P V V

H H H H V V V V
  

(8.32)
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 Substituting back into eq. (8.26) yields the fi nal result

   1/ 4 145 | 45
1/ 2 2s iP    . (8.33) 

 Let’s summarize what we’ve discovered. For the entangled state     of eq. (8.19), 
the polarization correlations between the signal and idler are perfect in both the horizon-
tal/vertical basis [  | 1s iP H H  , example 8.5] and the ±45° basis [  45 | 45 1s iP  ,
example 8.6]. For the state that is an equal mixture of   ,H H   and   ,V V   the polarization 
correlations are perfect in the horizontal/vertical basis [  | 1s iP H H  , problem 8.10], 
but  not  in the ±45° basis [  45 | 45 1/ 2s iP  , example 8.7]. Clearly it is possible to 
perform measurements that distinguish between these two possible states, and you can 
perform them for yourself in lab 5.   2    You can determine which state, entangled or mixed, 
best explains the data.    

   8.4    TESTING LOCAL REALISM   

 We’re going to describe an experiment which demonstrates that the natural world vio-
lates local realism; this is an experiment you can perform in lab 5. Furthermore, we’ll 
fi nd that quantum mechanics perfectly describes the experimental results. We haven’t 
yet defi ned what we mean by locality or reality, but we’ll discuss these concepts after 
we describe the experiment. In complement 8.B we will give mathematical defi nitions 
of these terms.   

   8.4.1    Alice and Bob’s Experiment   

 A downconversion source produces signal photons that are sent to Alice, and idler pho-
tons that are sent to Bob, as shown in  fi g.  8.3  . The source is similar to the polarization-
entangled source shown in  fi g.  8.2  , but it has some differences, which will be discussed 
below. Alice’s photons pass through a polarization analyzer oriented along   A  (a   PA

A
 ). 

She fi nds her photon to be polarized parallel to   A  with probability   AP  , and per-
pendicular to   A  with probability   AP  . Bob performs similar measurements on his 
photons, to determine whether they are polarized parallel or perpendicular to   B . Alice 
is free to rotate her PA how she chooses, and she performs measurements with it in 
two different orientations,   1A   and   2A  , randomly choosing between them. Bob also 
randomly switches his PA between two different orientations,   1B   and   2B  .    

    2.     Note that we must perform measurements in two different bases to distinguish between the states. It is 
possible to create a classical mixed state that will have perfect polarization correlations between two beams 
in any chosen basis, but those classical correlations will not be maintained in all bases, as they are for the 
entangled state. See problems 8.12 and 8.13. 
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 Alice and Bob are a great distance apart from each other, and they perform their 
measurements independently, and without communicating with each other. The source 
is halfway between Alice and Bob, so that they receive their photons at the same time. 
As they perform their polarization measurements they note the precise arrival time of 
the photons (using atomic clocks), so that they can go back, after all the measurements 
are recorded, and compare results corresponding to each photon pair. So, for every 
photon that she detects, Alice records its arrival time, the orientation of her PA (  1A   or 
  2A  ), and the measured polarization (  1A  ,   2A  , etc.). Bob records the same information 
about his measurements. 

 After all the data have been recorded, Alice and Bob get together to analyze their 
data, and determine quantities such as   1 2,A BP  , which is the joint probability that 
Alice fi nds her photon be polarized along   1A  , and Bob fi nds his photon to be polarized 
along   2B  . During this comparison Alice and Bob make four observations about their 
data.   3    The fi rst three are: 
   
       1.     On those trials where Alice sets her PA to   1A   and Bob sets his to   1B  , they 

measure photons polarized along these directions 9% of the time [  1 1, 0.09A BP  ].  

      2.     On those trials where Alice sets her PA to   1A   and Bob sets his to   2B  , if Alice mea-
sures her photon to be polarized along   1A  , Bob  always  measures his photon to be 
polarized along   2B   [  2 1| 1B AP  ].  

      3.     On those trials where Alice sets her PA to   2A   and Bob sets his to   1B  , if Bob mea-
sures his photon to be polarized along   1B  , Alice  always  measures her photon be 
polarized along   2A   [  2 1| 1A BP  ].   

   

  

λ/2 ϕ

PAθB

Alice

Bob

PAθA

θA

θB

⊥θB

⊥θA

    

  Fig 8.3     An experiment performed by Alice and Bob. A polarization-entangled source directs 
signal photons to Alice, and idler photons to Bob. Alice and Bob have linear polarization 
analyzers (  

A
PA   and   PA

B
 ), which they use to measure the polarization of their photons. The 

half-wave plate,   / 2 , and the birefringent phase plate,    , are used to control the polariza-
tion of the pump.   

    3.     We’ll assume that the number of measurements that Alice and Bob have performed is large, large 
enough that the statistical errors in the probabilities cannot account for any deviations from the observations 
described here. 
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   There are four possibilities for the settings of the two PAs, and these observations 
apply to three of those settings. Let’s use these three observations to infer something 
about the data for the fourth setting. Consider only those trials described by observa-
tion 1, where Alice measures photons to be polarized along   1A  , and Bob measures 
photons to be polarized along   1B  ; this occurs 9% of the time. What happens if Bob 
changes his mind and orients his PA to   2B  ? Since Alice measures her photon to be 
polarized along   1A  , observation 2 tells us that Bob  must  measure his photon to be 
polarized along   2B  . What if, instead, Bob leaves his PA at   1B  , but Alice changes her 
mind and orients hers to   2A  ? Since this is a trial where Bob will measure his photon 
be polarized along   1B  , observation 3 says that Alice  must  measure her photon be 
polarized along   2A  . 

 If Alice changes her PA to   2A   she will measure her photon to be polarized along that 
direction. If Bob changes his PA to   2B   he will measure his photon be polarized along 
that direction. It follows that if they  both  switch their PAs, Alice will measure her pho-
ton to be polarized along   2A   and Bob will measure his photon to be polarized along 
  2B  . Observations 2 and 3 force us to conclude that every time photons would be meas-
ured to be polarized along   1A   and   1B  , if the PAs are both switched, the photons must 
be measured to be polarized along   2A   and   2B  . Measurements of photons polarized 
along   2A   and   2B   must occur at least as often as measurements of photons polarized 
along   1A   and   1B  :

   2 2 1 1, ,A B A BP P   . (8.34) 

 Since observation 1 tells us that   1 1, 0.09A BP  , we conclude that when Alice and 

Bob examine their data they must fi nd   2 2, 0.09A BP  . 

 We now have a prediction about what Alice and Bob should see for measurements 
in which their PAs are oriented along   2A   and   2B  . What do they in fact observe? Their 
fourth observation is: 
   
       4.     On those trials where Alice sets her PA to   2A   and Bob sets his to   2B  , they  never  observe 

photons to be simultaneously polarized along these two directions [  2 2, 0A BP  ].   
   

   What’s wrong? The measured data do not agree with our prediction, so there must 
be an error somewhere. You can go back and double check, but I assure you that there 
is no fl aw in the logic that leads us to the prediction in eq. (8.34). Furthermore, in com-
plement 8.B we will prove a generalized version of eq. (8.34), under some very reason-
able assumptions. 

 Ah, assumptions! There must be some assumption that we are making about this 
experiment that is violated. Clearly if we’re making a false assumption, even one that 
we’re not explicitly aware of, we could arrive at the wrong prediction. It turns out that 
there are two assumptions we’ve been making that are implicit in classical probability 
theory.    
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   8.4.2    Locality and Reality   

 First, we’ve been making the locality assumption. We’ve been assuming that meas-
urements performed in one location do not infl uence measurements performed in 
another. If the photons in one beam can somehow signal the photons in the other that 
they have been measured to have a particular polarization, it would be possible in the 
scenario described above to have   2 2, 0A BP  , despite any reasoned arguments 
to the contrary. 

 Another way that nonlocality could infl uence results would be if the source was 
somehow affected by the measurements. You can imagine that if the source somehow 
“knew” what the settings of the PAs were, it could produce photons with polarizations 
consistent with the measurement results, but not consistent with our inference. 

 One way to try to ensure the validity of the locality assumption is to place the 
observers far enough apart so that the measurements are space-like separated. In other 
words, the measurement apparatuses are far enough apart so that a signal would need 
to travel at faster than the speed of light in order for it to be possible for one measure-
ment to infl uence the other. In the experiment just described, this is done by having 
Alice and Bob very far apart, and having their measurements synchronized to high 
precision with an atomic clock. In order to assure that the measurements cannot infl u-
ence the source, it is necessary for Alice and Bob to randomly change the settings of 
their PAs on a timescale that is short compared to the time it takes the photons travel 
from the source to their detectors. 

 If Alice and Bob work very hard to do these things, they will fi nd that their observa-
tions are not affected. They would still infer that   2 2, 0.09A BP  , and measure that 
  2 2, 0A BP  . They have eliminated the possibility that this difference is due to 
communication at the speed of light, but they cannot rule out nonlocal infl uences which 
are due to faster-than-light (possibly instantaneous) communication. 

 While the locality assumption is subtle, the reality assumption is even more so. 
The reality assumption is that physically measurable quantities have defi nite values 
before (and whether or not) they are actually measured. In our example one way for 
the reality assumption to be satisfi ed would be if our source emitted photon pairs with 
polarizations that are determined when they leave the source. The polarizations may 
be random, and they may be correlated with each other, but once they leave the 
source the polarizations are fi xed. Classical physics is consistent with reality defi ned 
in this way. 

 Note that the reality assumption need  not  mean that the results of measurements are 
predetermined at the source. For example, a source could emit a photon polarized along 
+45°. If this photon strikes a PA HV  it will randomly split between the horizontal and 
vertical output ports. The measurement result is random, even though the polarization 
of the photon before the measurement corresponds to an “element of reality,” to use the 
phrase Einstein, Podolsky, and Rosen (EPR) used in the famous paper describing their 
belief that quantum mechanics was incomplete [8.2]. 

 In summary: Our predictions are not in agreement with the experimental results, and 
there is no fl aw in our logic. The only other possibility is that an assumption we’ve 
used in making the predictions must be violated. Our only assumptions are locality and 

Lin

Lin



8:  TWO-PARTICLE SYSTEMS AND ENTANGLEMENT  •   169 

reality, so we must abandon one or the other (or both).   4    The experiment described here 
offers no clues as to which assumption we must abandon. However, there are other 
experiments that have been performed in which even certain types of nonlocal com-
munication between detectors is not enough to explain the data [8.3].    

   8.4.3    The Quantum Mechanical Explanation   

 Let’s see how quantum mechanics can explain our observations, even though a local-
realistic model cannot. First, we need to describe how the source of  fi g.  8.3   is different 
from that of  fi g.  8.2  . Notice that in  fi g.  8.3   there is a half-wave plate and a birefringent 
phase shifter in front of the downconversion crystals. By rotating the half-wave plate, 
we can change the relative magnitudes of the horizontal and vertical components of the 
polarization of the pump beam. If the pump beam has a larger horizontal component, 
the state of the signal and idler photons will have a larger   ,V V   contribution; similarly, 
with a larger vertical component to the pump beam, the state of the emerging photons 
will have a larger   ,H H   contribution. The phase shifter in  fi g.  8.3   is a birefringent 
plate; tilting it varies the relative phase shift between the horizontal and vertical po-
larizations of the pump beam. This relative phase shift between the components of 
the pump polarizations gets mapped into the relative phases of the   ,H H   and   ,V V   
contribution to the signal state. The state of the signal photons leaving the source is thus

   , 1 ,ia H H a e V V   . (8.35) 

 The parameter  a  is adjusted by rotating the half-wave plate, while     is adjusted by 
tilting the birefringent plate. The source of  fi g.  8.3   is capable of producing a state 
consisting of an arbitrary linear combination of   ,H H   and   ,V V  . 

 For Alice and Bob’s experiment, the source is adjusted to produce photons in the 
state

   1 0.2 , 0.8 ,H H V V   . (8.36) 

 In the problems you will verify that with photons in this state, and with proper settings 
of the polarization analyzers, Alice and Bob will indeed obtain measurement results 
described by observations 1–4. The measured data are consistent with the quantum 
mechanical predictions, but not the predictions of local realism. 

 Quantum mechanics can explain the results of this experiment by violating either 
the locality assumption, or the reality assumption, or both. In sec. 8.2 we’ve already 
stressed that entangled states effectively violate the reality postulate. There we said that 
for entangled states, the state of the two-particle system is well defi ned, but it is not 

    4.     In truth, locality and reality are the only  fundamental  assumptions that have been made. In all real ex-
periments there are other assumptions, due to the technical implementation of the experiment. For example, 
most experiments require the fair sampling assumption, which says that the photons that are actually detected 
are a fair sample of those that are emitted by the source. In other words, there is no bias in the detectors that 
is somehow skewing measured statistics. 
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possible to associate a defi nite pure state (an element of reality) with each individual 
particle. However, particles in classical mixed states are consistent with the reality 
postulate. In such a state, particles are in one state or the other, we just don’t know 
which one. Particles in classical mixed states do not violate tests of local realism.   5    

 Another possibility is that nature (and its quantum mechanical description) could 
violate locality. Indeed, quantum mechanics does. You might think of this in terms of 
the state collapse associated with the projection postulate. Note that the projection 
 postulate doesn’t say anything about the speed at which the state collapse spreads out-
ward from the location of the measurement. Performing a measurement on one particle 
instantaneously collapses the state of a two-particle system throughout all of space, 
which effectively changes the state of the other particle. Before Alice’s measurement 
Bob’s particle is not in a defi nite pure state, but after her measurement it is. 

 Note, however, that this instantaneous collapse of the state does  not  violate causality; 
Alice and Bob cannot use this state collapse to transmit any information. For example, 
Alice’s measurement of a certain polarization allows Alice to instantaneously determine 
the measurement result that Bob will obtain, but what good is that? There is no way for 
her to transmit that information to Bob faster than the speed of light. As far as Bob is 
concerned, his measurement is random, since he can’t know what Alice measured. Fur-
thermore, Alice cannot use the state collapsed to send a signal to Bob. There is no meas-
urement (or other operation) that Alice can perform locally that will change the result of 
any measurement that Bob might perform. We’ll talk more about this in sec. 17.3. 

 The ideas behind the particular test of local realism that we have just described were 
originally due to Lucian Hardy. Other descriptions of this test can be found in refs. [8.4] 
and [8.5]. Note that the observations we’ve described are idealized, and the inequality 
of eq. (8.34) is not applicable to real experiments. In complement 8.B we’ll derive an 
experimentally testable inequality that is consistent with local realism, but is violated 
by quantum mechanics and by nature.    

   8.4.4    Other Tests of Local Realism   

 The fi rst person to prove that it is possible to test local realism experimentally was John 
Bell. In a famous 1964 paper, Bell derived the fi rst “Bell inequality” that must be satis-
fi ed by any local-realistic theory, but is violated by quantum mechanics [8.6]. Since that 
time, others have derived similar inequalities, which are frequently referred to generi-
cally as Bell inequalities. In particular, these newer inequalities are actually accessible 
to experimental test, whereas the original Bell inequality was for an idealized system. 
In addition to Hardy’s test of local realism, you’ll also perform one of these tests in lab 
5. For a further discussion of Bell inequalities, and experimental tests of those inequali-
ties, I refer you to [8.7], and the references therein. 

 The fi rst suggestion of a test of local realism that did not involve an inequality 
was given by Daniel Greenberger, Michael Horne, and Anton Zeilinger (GHZ). For a 
discussion of the GHZ test refer to [8.8].    

    5.     It is possible for quantum states that have some mixed character (that are not 100% pure) to violate 
local realism. Indeed, no real experimentally produced state is 100% pure. 
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   8.4.5    One More Thought   

 In this chapter we’ve discussed the differences that one would observe between meas-
urements performed using entangled states and measurements performed using mixed 
states. However, the proof that nature allows entangled states can only come from 
 experiments. The fi rst experiments that showed entanglement actually exists were 
those performed to test local realism. 

 We now know that entanglement has a number of interesting and important uses, 
including quantum teleportation and quantum computing. We’ll discuss some of these 
in  chapter  17  .       
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         8.6  PROBLEMS    

           8.1     Calculate the expectation values of   s
HV  ,   i

HV  , and   si
HV   for photons prepared 

in the state   ,V L  .  
      8.2     Calculate the expectation values of   s

HV  ,   i
HV  , and   si

HV   for photons prepared 
in the state   1/ 3 , 45 2 / 3 , 45H H  .  

      8.3     Calculate the probability that both the signal and the idler photons will 
be measured to have +45° polarization, for photons prepared in the state 
  1/ 3 , 45 2 / 3 , 45H H  .  

      8.4     Calculate the probability that the signal and idler photons will be measured to 
have orthogonal polarizations, for photons prepared in the state   , 45R  . Both 
photons are measured in the horizontal/vertical basis.  

      8.5*     Prove that the entangled state   , ,a H H b V V  , where  a  and  b  are ar-
bitrary, nonzero constants, cannot be factorized into a product state (i.e. 
  s is i ). (Hint: Start by assuming that     can be written as a product 
state.)  
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      8.6*     The state     produced in the downconversion source of  fi g.  8.2   is one of the 
four Bell states, which are given by

   1 , ,
2

H H V V   . (8.37) 

    
1 , ,
2

H V V H   . (8.38) 

   Prove that the Bell states form a basis in the Hilbert space describing the polari-
zations of two photons.  

      8.7     For a two-photon system prepared in the state 
  1/ 2 45, 45 45, 45  , determine the probabilities of obtaining 
the following measurements:

  (a) the signal photon is polarized at +45°;
  (b) the signal photon is polarized at –45°;
  (c)  the signal photon is polarized at +45°, given that the idler photon is polar-

ized at +45°.  
      8.8     For a two-photon system prepared in the state 

  1/ 2 45, 45 45, 45  , determine the probabilities of obtaining 
the following measurements:

  (a) the signal photon is horizontally polarized;
  (b) the signal photon is vertically polarized;
  (c)  the signal photon is horizontally polarized, given that the idler photon is 

horizontally polarized.  
      8.9*     The probability of measuring a signal photon to have an elliptical polarization 

corresponding to the state   cos sini s
s s se H e V   is   sP e  . The 

probability of measuring an idler photon to have an elliptical polarization cor-
responding to the state   cos sini i

i i ie H e V   is   iP e  . A suitable 
parametric downconversion source is used to create light in the state     of eq. 
(8.19). 

   (a)  Calculate the joint measurement probability   ,s iP e e   for photons prepared 
in state    . 

   (b) Calculate the probability   iP e  . 

   (c) Calculate the conditional probability   |s iP e e  . 

   (d)  What is the probability   |s iP e e   for the special case of    s i  and   s i  
(i.e., the polarizations of the two beams are complex conjugates of each 
other)? (You should fi nd that the polarizations are perfectly correlated.) 

   (e)   What does this say about the special case of linear polarizations (  0s i  )? 
Do you fi nd anything interesting about this result?  
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      8.10*     Show that the probabilities calculated in example 8.5 are unchanged if the state 
    is replaced by a mixed state containing 50%   ,H H   and 50%   ,V V  .  

      8.11     Here I’d like you to use your intuition to answer these questions, without resort-
ing to calculations. Of course, you are free to perform calculations to confi rm 
your intuition. When you’re done, compare the results you get here to those of 
example 8.7. 

   A source produces signal and idler photons that both pass through linear polar-
izers oriented at +45°. If this source produces photons in the state   ,H H  : 

   (a) What is the probability of detecting a signal photon? 
   (b) What is the probability of detecting an idler photon? 
   (c) What is the probability of detecting both signal and idler photons? 
   (d)  What is the probability of detecting the signal photon, given that an idler 

photon is detected? 

   If this source produces photons in the state   ,V V  : 
   (e) What is the probability of detecting a signal photon? 
   (f)  What is the probability of detecting an idler photon? 
   (g) What is the probability of detecting both signal and idler photons? 
   (h)  What is the probability of detecting the signal photon, given that an idler 

photon is detected? 

   If this source randomly produces photons in a mixture of the states   ,H H   and 
  ,V V  : 

   (i)  What is the probability of detecting a signal photon? 
   (j)  What is the probability of detecting an idler photon? 
   (k) What is the probability of detecting both signal and idler photons? 
   (l)    What is the probability of detecting the signal photon, given that an idler 

photon is detected?  
      8.12     For a system prepared in an equal mixture of the states   45, 45   and  45, 45   , 

determine the probabilities of obtaining the following measurements:
  (a) the signal photon is polarized at +45°,
  (b) the signal photon is polarized at –45°,
  (c)  the signal photon is polarized at +45°, given that the idler photon is polar-

ized at +45°. Compare your results to those of problem 8.7.  
      8.13     For a system prepared in an equal mixture of the states   45, 45   and   45, 45  , 

determine the probabilities of obtaining the following measurements:
  (a)  the signal photon is horizontally polarized;
  (b) the signal photon is vertically polarized;
  (c)  the signal photon is horizontally polarized, given that the idler photon is 

horizontally polarized. Compare your results to those of problem 8.8.  
      8.14*     A suitable parametric downconversion source is used to create light in the 

state   1   of eq. (8.36), where signal and idler photons travel to Alice and Bob, 
respectively. 
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   (a)  Calculate the joint probability   ,A BP   that Alice measures her photon to 
be linearly polarized along the angle   A , and Bob measures his photon to be 
linearly polarized along the angle   B  . 

   (b)  For the angles   o
1 19A  ,   o

2 35A  ,   o
1 19B  , and   o

2 35B  , calculate the 

four probabilities   1 1,A BP  ,   2 1|B AP  ,   2 1|A BP   and   2 2,A BP  . 
   (c)  Compare your results to see if they are consistent with observations 1–4 in 

sec. 8.4. Are your results consistent with local realism?  
      8.15*     A suitable parametric downconversion source is used to create light in the 

state   1   of eq. (8.36), where signal and idler photons travel to Alice and Bob, 
respectively. 

   (a)  Calculate the probability   AP   that Alice measures her photon to be line-
arly polarized along the angle   A , and the probability   BP   that Bob meas-
ures his photon to be linearly polarized along the angle   B  . 

   (b)  Assume that Alice and Bob do not communicate with each other, or with 
the source. Can Alice use her  measurement  to send a signal to Bob? Can she 
perform a measurement that will affect the probabilities of any measurement 
that Bob might perform?   

   



         COMPLEMENT 8.A      

  The Density Operator   

 In this complement we’ll describe the density operator. The density operator is a way 
to represent a general state in quantum mechanics, as it can be used to represent both 
pure and mixed states.   

   8.A.1    Definition and Properties   

 The density operator   ̂   corresponding to an arbitrary pure state     is 

  ̂    . (8.A.1) 

 For a mixture of states   j  , each prepared with probability   j jp P  , the density 
operator is given by

   ̂ j j j
j

p   . (8.A.2) 

 It can be readily seen from eq. (8.A.2) that the density operator is Hermitian:   †ˆ ˆ . 
 Since   jp   is the probability of preparing the system in the state   j  , it must be a real 

number. It must also satisfy

   0 1jp   . (8.A.3) 

 Probabilities must be normalized, so it is also necessary that

   1j
j

p   . (8.A.4) 

 We will assume that the states   j   are normalized, but otherwise make no more as-
sumptions about them. They do not need to form a basis; they don’t even need to be 
orthogonal. They are simply a set of states that the system can be prepared in with some 
probability. 

 It is important to note that the mixed state density operator in eq. (8.A.2) is  not  the 
density operator corresponding to the pure state

   j j
j

p   . (8.A.5) 
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 The density operator corresponding to this pure state is given by eq. (8.A.1):

   

,

ˆ

.

j j k k
j k

j k j k
j k

p p

p p

  (8.A.6)    

   8.A.2    The Trace   

 The trace of a matrix is equal to the sum of its diagonal elements. It is therefore natural 
to defi ne the trace of an operator as being equal to the sum of the diagonal elements of 
its matrix representation. For example, the trace of   Â  is

   

ˆTr

ˆ ,

nn
n

n n
n

A A

A
  (8.A.7) 

 where the states   n   form an orthonormal basis. The trace is independent of the chosen 
basis, and is linear:

   ˆ ˆˆ ˆTr Tr TraA bB a A b B   . (8.A.8) 

 Using eq. (8.A.7), we can see that

   

Tr

,

n n
n

n n
n

n n
n

a b a b

b a

b a

b a

 . (8.A.9) 

 where we’ve used the completeness of the basis states. 
 The trace of the density operator is given by
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ˆTr Tr

Tr

1,

j j j
j

j j j
j

j j j
j

j
j

p

p

p

p

  (8.A.10) 

 where we’ve used eqs. (8.A.2), (8.A.8), (8.A.9), and (8.A.4).   ˆTr 1  is the normali-
zation condition for a density operator. Like any other operator in a discrete basis, the 
density operator can be represented as a matrix, referred to as the density matrix. The 
elements of the density matrix are

   ˆmn m n   . (8.A.11) 

 In terms of these matrix elements, the normalization condition for the density matrix is

   ˆTr 1nn
n

  . (8.A.12) 

 For a pure state the density operator is given by   ̂  , so clearly   2ˆ ˆ  . Thus, 
for pure states   2ˆ ˆTr =Tr 1 . The density operator for a mixed state must be nor-
malized, so   ˆTr 1 . However, it can be shown that for mixed states   2ˆ ˆ   and 
  2ˆTr 1 . For this reason   2ˆTr   can be taken as a measure of the “purity” of a state. 
The closer that   2ˆTr   is to 1, the more pure it is; only pure states achieve   2ˆTr 1 .    

   8.A.3    Expectation Values and Probabilities   

 Suppose that we wish to determine the expectation value of observable  A , for a system 
prepared in a mixed state. When the system is prepared in state   j  , the expectation 
value is

   ˆ ˆ
j jj

A A   (8.A.13) 
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 When calculating the expectation value for the mixed state, we must weight   ˆ
j

A   by 
the probability   jp   that the system is prepared in state   j  , and then sum over all the 
possible state preparations. In other words

   

ˆ ˆ

ˆ

ˆTr

ˆTr

ˆ ˆTr .

jj
j

j j j
j

j j j
j

j j j
j

A A p

p A

p A

A p

A

  (8.A.14) 

 Since the probability of obtaining a particular eigenvalue as a measurement result can 
be written as the expectation value of the projection operator onto its corresponding 
eigenstate, this expression can also be used to calculate probabilities of measurements. 

 EXAMPLE 8.A.1 
 Compare the density operators that correspond to the following two states: (a) a 
superposition that consists of equal parts   ,H H   and   ,V V   (assuming a relative phase 
of zero), and (b) a mixture that consists of equal parts   ,H H   and   ,V V  . 
 (a) The state vector corresponding to this pure state is

   1 , ,
2

H H V V   . (8.A.15) 

 Its corresponding density operator is

       

ˆ

1 1, , , ,
2 2

1 1 1 1, , , , , , , , .
2 2 2 2

H H V V H H V V

H H H H H H V V V V H H V V V V

  (8.A.16) 

 (b) The density operator corresponding to this mixed state is
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1 1ˆ , , , ,
2 2

H H H H V V V V   (8.A.17) 

 Clearly these are different; the density operator corresponding to the pure state has 
two more terms. These extra terms, which intermingle the   ,H H   and   ,V V   contribu-
tions, contain information about the entanglement between the states.  

 EXAMPLE 8.A.2 
 For a two-photon system prepared in an equal mixture of states   ,H H   and   ,V V  , 
determine the probability that the signal photon is measured to be polarized along +45°, 
given that the idler photon is found to be polarized along this same direction. 

 The density operator corresponding to this state is given by eq. (8.A.17). We want to 
fi nd   45 | 45s iP  , which is

   
45 , 45

45 | 45
45
s i

s i
i

P
P

P
  . (8.A.18) 

 Using eq. (8.A.14) we fi nd the numerator of this expression to be

   

45 , 45

45 , 45

ˆ45 , 45

ˆ ˆTr

1Tr 45, 45 45, 45 , ,
2

1Tr 45, 45 45, 45 , ,
2

1 1 1Tr 45, 45 ,
2 2 2

1 1 1Tr 45, 45 ,
2 2 2

s i s i

s i

P P

P

H H H H

V V V V

H H

V V

1 , 45, 45 , 45, 45
4
1 1 1 1 1
4 2 2 2 2
1 .
4

H H V V

  (8.A.19) 

 Applying eq. (8.A.14) to the denominator of eq. (8.A.18) we fi nd
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45

45

ˆ45

ˆ ˆTr

1Tr 45 45 , ,
2

1Tr 45 45 , ,
2

1 45 45
2
1 45 45
2
1 1 1 1 1
2 2 2 2 2
1 .
2

i i

i

i i

i i

i i i i s s

i i i i s s

P P

P

H H H H

V V V V

H H H H

V V V V

  (8.A.20) 

 Substituting back into eq. (8.A.18) yields the fi nal result

  1/ 4 145 | 45
1/ 2 2s iP  . (8.A.21)   

 This agrees with the results of example 8.7.     

   8.A.4    Schrödinger’s Cat   

 As an example of the usefulness of the density matrix, consider Schrödinger’s cat para-
dox. Schrödinger imagined placing a cat in a box with some radioactive material. After 
one hour there is 50% probability that one of the radioactive atoms decays, and this 
decay triggers a mechanism which kills the cat. Before the box is opened, and a meas-
urement is performed to determine whether the cat is alive or dead, the state of the 
atom-cat system should thus be

   1 , ,
2

no decay alive decay dead   . (8.A.22) 

 which is an entangled state. Of course, from our discussions above this would imply 
that the cat is simultaneously alive and dead, which is preposterous. The alternative is 
that the system is described by the mixed-state density operator

      1 1ˆ , , , ,
2 2mix no decay alive no decay alive decay dead decay dead   . (8.A.23) 

 This means that the cat is either alive or dead, which is a much more reasonable propo-
sition. 
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 Even if, immediately after the atomic decay, the system is created in the entangled 
state    , it will very rapidly evolve into the mixed state   ̂ mix , so we never actually see 
the atom-cat system in the entangled state. The reason for this is known as decoherence. 
In order for the system to remain in the entangled state, the phase relationship between 
the states   ,no decay alive   and   ,decay dead   must remain stable—these states must be 
coherent with each other (similar to the coherence described in complement 2.A). To 
see this, rewrite eq. (8.A.22) as 

  1 , ,
2

ino decay alive e decay dead   . (8.A.24) 

 which makes this phase relationship more apparent. The density operator correspond-
ing to this state is

  

ˆ

1 1, , , ,
2 2
1 1, , , , .
2 2

entangle

i

i

no decay alive no decay alive e no decay alive decay dead

e decay dead no decay alive decay dead decay dead

   

 If     fl uctuates, the exponentials in this expression average to zero, and the density op-
erator reduces to that of eq. (8.A.23). 

 With care microscopic systems can be placed in entangled states, but the cat is a mac-
roscopic system containing of the order   2310   atoms, all subject to thermal excitations 
which cause phase fl uctuations. For all intents and purposes the coherence of the atom-cat 
system decays instantaneously, leaving it in the mixed state   ̂ mix . That said, and despite the 
experimental diffi culty in entangling macroscopic objects, entanglement involving ~  1610   
atoms in two diamond crystals at room temperature has recently been observed [8.A.1]. 
This macroscopic entanglement only persists on picosecond timescales, however.         

   8.A.5  References  
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         8.A.6  PROBLEMS    

           8.A.1     For a system prepared in an equal mixture of the states   45, 45   and   45, 45  , 
use the density operator to determine the probabilities of obtaining the follow-
ing measurements:

  (a) the signal photon is horizontally polarized;
  (b) the signal photon is vertically polarized;
  (c) the signal photon is horizontally polarized, given that the idler photon is 

horizontally polarized. Compare your results to those of problem 8.13.  
      8.A.2     Write down the density matrix that corresponds to the mixed state that is one 

third   1/ 2 , ,H H V V  , and two thirds   ,V V  . Verify that   ˆTr   

and   2ˆTr   yield what you would expect for this mixture.           

(8.A.25)



    6.     It is straightforward to generalize the arguments presented here to allow  λ  to be a continuous random 
variable.  

    COMPLEMENT 8.B      

  The Bell-Clauser-Horne Inequality   

 In this complement we’ll prove an experimentally testable inequality that generalizes 
eq. (8.34), and that must be satisfi ed by all local, realistic theories. This is the inequality 
that will be tested in lab 5. Throughout this discussion we will be assuming that Alice 
and Bob are performing an experiment like that depicted in  fi g.  8.3  .   

   8.B.1    Reality   

 We are interested in probabilities such as   ,A BP  , which is the joint probability that 
Alice measures her photon be polarized along   A , and Bob measures his photon to be 
polarized along   B . In quantum mechanics such probabilities depend on the state     of 
the signal and idler photons pairs. In classical physics we will assume that probabilities 
of this type depend on a variable we will call    , which describes the source. If we know 
   , we know what polarizations the signal and idler photons have, and hence we know 
what the joint probability of the measurements will be. In this discussion we’ll be as-
suming that     is a discrete random variable.   6    The probability that Alice measures   A , 
and Bob measures   B , and the source is described by     is   , ,A BP  . The probability 
that Alice measures   A , and Bob measures   B , given that the source is described by     
is   , |A BP  . 

 If we know    , we know what the joint probability of measurements will be. How-
ever, for any given measurement we don’t know    , because we don’t have direct access 
to it; for this reason     is often referred to as a “hidden variable.” Therefore, we must 
sum over the possible values of    , which occur with probability   P  . This means

   

, , ,

, | .

A B A B

A B

P P

P P
  (8.B.1) 
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 This can also be written as:

   

, , ,

| , ,

| , | .

A B A B

A B B

A B B

P P

P P

P P P

  (8.B.2) 

 In writing eq. (8.B.2) we have used the reality assumption. This assumption has two 
parts. The fi rst is that it is possible to describe the source using the hidden variable     
(i.e., that     exists). The second is that all of the probability distributions we’ll be talking 
about have the properties of classical probability distributions; they are real, take on 
values between 0 and 1, and are normalized. 

 So you see, it is possible to defi ne reality mathematically! The reality assumption is 
consistent with classical physics.    

   8.B.2    Locality   

 The locality assumption states that the results of measurements obtained by Alice are 
independent of those obtained by Bob, and vice versa. This assumption can be enforced 
in an experiment by ensuring that Alice’s and Bob’s measurements are space-like sep-
arated. Locality manifests itself mathematically as follows. Consider the probability 
  | ,A BP   that appears in the last line of eq. (8.B.2), which is the probability that 
Alice measures her photon be polarized along   A , given that Bob measures his photon 
to be polarized along   B , and that the source is described by    . Under the locality as-
sumption, the probability that Alice measures a certain polarization cannot depend on 
what Bob measures, so we must have

   | , |A B AP P   . (8.B.3) 

 In other words, a measurement cannot be conditioned on something that it is inde-
pendent of. The correlations between Alice’s and Bob’s measurements are maintained 
because both measurements depend on    . Rewriting eq. (8.B.2) using eq. (8.B.3) yields

   , | |A B A BP P P P   . (8.B.4) 

 In sec. 8.4 we also stated that Alice and Bob want to ensure that their measurements 
cannot affect the source. This assumption means that     is independent of   A  and   B .    
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   8.B.3    The Inequality   

 The source produces photons described by    , and Alice sets her polarization analyzer 
along the angle   A . There are two possible outcomes for Alice’s measurement: the pho-
ton is parallel to   A , or the photon is perpendicular to   A . Since all probability distribu-
tions need to be normalized, the sum of the probabilities of these outcomes must be 1:

   | | 1A AP P   . (8.B.5) 

 This same condition applies to Bob’s measurements. 
 The experimenters each perform measurements at two different settings of their 

polarization analyzers: Alice at   1A   and   2A  , Bob at   1B   and   2B  . We can use eq. (8.B.4) 
to express the probability   1 1,A BP   that Alice measures her photon be polarized 
along   1A   and Bob measures his to be polarized along   1B  . We can also apply the nor-
malization condition of eq. (8.B.5) to insert some factors of 1, and thus expand this 
expression as

   

1 1 1 1

1 1 2 2

1 1 2

1 1 2

1 1 2 2 2

1 1 2

1 1 2 2

, | |

| | | |

| | |

| | |

| | | | |

| | |

| | | |

A B A B

A B B A A

A B A

A B A

A B A B B

A B A

A B A B

P P P P

P P P P P

P P P P

P P P P

P P P P P P

P P P P

P P P P

1 1 2 2

1 1 2

| | | |

| | | .

A B A B

A B A

P

P P P P P

P P P P

   

 Let’s look at the last three sums in this expression separately, keeping in mind that 
each of the probabilities is real, positive, and less than 1. The fi rst of these says

  
1 1 2 2 2 2

2 2

| | | | | |

, ,

A B A B A B

A B

P P P P P P P P

P
   

(8.B.7)

(8.B.6)
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 where once again we’ve used eq. (8.B.4). The penultimate sum in eq. (8.B.6) states

  1 1 2 2 1 2

1 2

| | | | | |

, .

A B A B A B

A B

P P P P P P P P

P

   

 The last sum in eq. (8.B.6) says that

  
1 1 2 1 2

2 1

| | | | |

, .

A B A B A

A B

P P P P P P P

P

  (8.B.9) 

 Combining eqs. (8.B.6)–(8.B.9) yields the inequality

   1 1 2 2 1 2 2 1, , , ,A B A B A B A BP P P P   . (8.B.10) 

 This is a form of the Bell-Clauser-Horne inequality, which we have applied to the ex-
perimental confi guration of  fi g.  8.3  , and which must be satisfi ed by any local, realistic 
theory [8.B.1].    

   8.B.4    Discussion   

 Now we need to show that the inequality of eq. (8.B.10) applies to the discussion of 
sec. 8.4. Let’s begin by examining observation 2, which says that

   2 1| 1B AP   . (8.B.11) 

 For the polarizer settings applicable to observation 2, the only possibilities for Bob’s 
measurements are   2B   and   2B  , so

   

2 1 2 1

2 1 2 1

| | 1

| 1 |

1 1 0 ,

B A B A

B A B A

P P

P P    (8.B.12) 

 where we’ve used eq. (8.B.11). We can use this result to see that

   1 2 2 1 1, | 0A B B A AP P P   . (8.B.13) 

 Thus, eqs. (8.B.11) and (8.B.13) are equivalent, which makes intuitive sense. If Bob 
always measures photon polarized along   2B   when Alice measures hers to be polarized 
along   1A  , then it must be true that Bob and Alice never measure their photons to be po-
larized along   1A   and   2B  . Similar reasoning applied to observation 3 [  2 1| 1A BP  ] 
tells us that Alice and Bob fi nd

(8.B.8)
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   2 1, 0A BP   . (8.B.14) 

 Inserting eqs. (8.B.13) and (8.B.14) into eq. (8.B.10) yields

   1 1 2 2, ,A B A BP P   , (8.B.15) 

 which is the same as eq. (8.34) in sec. 8.4. Thus, the Bell-Clause-Horne inequality of 
eq. (8.B.10) applies to the discussion of Alice and Bob’s experiment in that section. 

 It’s important to understand why we said in sec 8.4 that eq. (8.B.15) [which is the 
same as eq. (8.34)] is not applicable to real experiments, necessitating the derivation of 
eq. (8.B.10). The only assumptions that go into eq. (8.B.10) are the locality and reality 
assumptions. Equation (8.B.15) requires two more assumptions:   2 1, 0A BP   and 
  1 2, 0A BP  . These assumptions were satisfi ed in our discussion of Alice and Bob’s 
experiment, so there we could get away with using eq. (8.B.15). 

 However, in real experiments we can  never  say that a measured probability is equal 
to 0; the best we can do for a probability is set an upper bound. For example, if you 
perform 1 million measurements and never observe a particular event, you can’t be 
certain that the probability is 0. The best you can determine is that the probability of 
your event is less than 1/1,000,000. Furthermore, real experiments have background 
noise. This means that you will almost always see something, even if you expect to see 
nothing. In a well performed experiment   2 1,A BP   and   1 2,A BP   will be small, 
but they’ll never be 0. Since this is the case, the full inequality of eq. (8.B.10) must be 
used in any experimental test.         

   8.B.5  References  

    [8.B.1]  N. D. Mermin, “Quantum mysteries refi ned,” Am. J. Phys. 62, 880 (1994). 

         8.B.6  PROBLEMS    

           8.B.1*     A suitable parametric downconversion source is used to create light in the state

   1 0.2 , 0.8 ,H H V V   , (8.B.16) 

   where signal and idler photons travel to Alice and Bob, respectively. 

   (a)  Calculate the joint probability   ,A BP   that Alice measures her photon to 
be linearly polarized along the angle   A , and Bob measures his photon to be 
linearly polarized along the angle   B  . 
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   (b)  Given the angles   o
1 19A  ,   o

2 35A  ,   o
1 19B  , and   o

2 35B  , cal-
culate the four probabilities   1 1,A BP  ,   2 2,A BP     1 2,A BP   and 
  2 1,A BP  . 

   (c)  Check whether these probabilities are consistent with the Bell-Clauser-
Horne inequality. Are your results consistent with local realism?  

      8.B.2     A suitable parametric downconversion source creates photon pairs in a mixed 
state that is 20%   ,H H   and 80%   ,V V  . The signal and idler photons travel to 
Alice and Bob, respectively. 

   (a)  Calculate the joint probability   ,A BP   that Alice measures her photon to 
be linearly polarized along the angle   A , and Bob measures his photon to be 
linearly polarized along the angle   B  . 

   (b)  Given the angles   o
1 19A  ,   o

2 35A  ,   o
1 19B  , and   o

2 35B  , cal-
culate the four probabilities   1 1,A BP  ,   2 2,A BP  ,   1 2,A BP  , and 
  2 1,A BP  . 

   (c)  Check whether these probabilities are consistent with the Bell-Clauser-
Horne inequality. Are your results consistent with local realism?           



    COMPLEMENT 8.C      

  Two Spin-1/2 Particles   

 In this complement we’ll discuss a system of two spin-1/2 particles (such as the proton 
and the electron in a hydrogen atom).   

   8.C.1    States and Operators   

 The basis states of a system consisting of two spin-1/2 particles can be given by the 
direct product. For example, the state corresponding to particle one having spin-up 
along the  z -direction, and particle two having spin-down along that same direction is

   1 2 1 2 ,z z z z z z    . (8.C.1) 

 A common set of basis states for this 4-dimensional system consists of the states

   ,z z    ,   ,z z    ,   ,z z    ,   ,z z    . (8.C.2)   

 We will denote the spin operator corresponding to particle 1 as   (1)Ŝ  , which is written 
in terms of its component operators as

   (1) (1) (1) (1)ˆ ˆ ˆ ˆ
x x y y z zS S SS u u u    . (8.C.3) 

 These are the same operators we discussed in  chapters  6  and  7  , so they satisfy the same 
commutation relations, for example

   (1) (1) (1)ˆ ˆ ˆ,x y zS S i S    , (8.C.4) 

 and so on. Similarly, we will denote the spin operator corresponding to particle 2 as 
  (2)Ŝ  . All operators corresponding to different particles commute with each other, for 
example

   (1) (2)ˆ ˆ, 0x xS S   , (1) (2)ˆ ˆ, 0x yS S   , (1) (2)ˆ ˆ, 0x zS S   .  (8.C.5) 

 As with photons, spin operators corresponding to a given particle only operate on the 
part of the state corresponding to that particle:
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   (2)ˆ , ,
2zS z z z z    , (8.C.6) 

    
2(2) 2 21 1 3ˆ , 1 , ,

2 2 4
S z z z z z z   (8.C.7) 

 Equation (8.C.7) follows from eq. (7.27). The operator corresponding to the total spin 
of the two particles is

   

(1) (2)

(1) (2) (1) (2) (1) (2)

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ .

x x x y y y z z z

x x y y z z

S S S S S S

S S S

S S S

u u u

u u u

  (8.C.8)           

   8.C.2    Eigenstates of Total Spin   

 Remember that the square of the spin operator,   2Ŝ  , is important, as it gives us informa-
tion about the magnitude of the angular momentum. For a two particle system

   
(1) (2) (1) (2)2

2 2(1) (2) (1) (2)

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ2 ,

S

S S

S S S S

S S
  (8.C.9) 

 where we’ve used the fact that   (1)Ŝ   and   (2)Ŝ   commute. From sec. 7.3 we know that the 
eigenstates and eigenvalues of   2Ŝ   and   ̂ zS   must be

   2 2ˆ , 1 ,s sS s m s s s m   (8.C.10) 

    ̂ , ,z s s sS s m m s m    , (8.C.11) 

 where

   1 30, ,1, , 2,...
2 2

s    , (8.C.12) 

    , 1, 2,..., 2, 1,sm s s s s s s   . (8.C.13) 

 A remaining question is, “How do the states of total spin   , ss m   relate to the states 
of eq. (8.C.2)?” Since the states of eq. (8.C.2) form a basis, it must be possible to write 
the states   , ss m   as linear combinations of them. The brute force approach to answering 
this question is to write   2Ŝ   as a   4 4  matrix using the basis states of eq. (8.C.2), and to 
then diagonalize the matrix to fi nd the eigenstates. These eigenstates must be equiva-
lent to the states   , ss m    . 
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 We’ll approach this problem in a different manner. First note that all of the states in 
eq. (8.C.2) are eigenstates of both   

2(1)Ŝ   and   
2(2)Ŝ  , with eigenvalue   23 / 4  [eq. 

(8.C.7)]. So, any linear combination of these states will also be eigenstates of these 
operators. Equation (8.C.9) then indicates that the eigenstates of   (1) (2)ˆ ˆS S   are the eigen-
states of   2Ŝ  ; we will look for these eigenstates. 

 It is useful to use the matrix representations of the spin component operators to 
determine their action on the spin states. For example

   (1)
1 1

0 1 1 0ˆ
1 0 0 12 2 2xS z z    . (8.C.14) 

 You should be able to verify that

   (1)
1 1

ˆ
2xS z z   , (1)

1 1
ˆ

2yS z i z   , (1)
1 1

ˆ
2yS z i z   .  (8.C.15) 

 These same relationships hold for particle 2 as well. Equations (8.C.14) and (8.C.16) 
will be used frequently in what follows. 

 In terms of component operators,   (1) (2)ˆ ˆS S   can be written as

   (1) (2) (1) (2) (1) (2) (1) (2)ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
x x y y z zS S S S S SS S    . (8.C.16) 

 The action of this operator on   ,z z   is

  

(1) (2) (1) (2) (1) (2) (1) (2)

2 2 2

2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , ,

1 1 1, , ,
4 4 4
1 , ,
4

x x y y z zz z S S z z S S z z S S z z

z z z z z z

z z

S S

           (8.C.17) 

 so   ,z z   is an eigenstate of   (1) (2)ˆ ˆS S  , and hence an eigenstate of   2Ŝ  . To determine its 
corresponding eigenvalue, we compute

   

2 2(1) (2) (1) (2)2

2 2 2

2

2

ˆ ˆ ˆ ˆ ˆ, , , 2 ,

3 3 2 ,
4 4 4

2 ,

1 1 1 , .

S z z S z z S z z z z

z z

z z

z z

S S

  (8.C.18) 

 So   ,z z   is an eigenstate of   2Ŝ   with eigenvalue   22  , which corresponds to the quan-
tum number   1s  . We know   ,z z   must also be an eigenstate of   ̂ zS  , and we can fi nd 
its eigenvalue using
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(1) (2)ˆ ˆ ˆ, ,

,
2 2

, .

z z zS z z S S z z

z z

z z

  (8.C.19) 

 The eigenvalue is thus    , which corresponds to   1sm  . Putting all this together means 
that

   1,1 ,z z    . (8.C.20) 

 While not everything about spin states makes intuitive sense, this seems reasonable. 
It says that two spin-1/2 particles with their  z -components pointing up have a total spin 
of 1, with a maximally upward  z -component. Given this, it would also make sense for 
the maximally downward pointing state to be

   1, 1 ,z z    . (8.C.21) 

 You will verify that this is indeed the case in the problems. 
 One way to fi nd the state   1,0   is to apply the lowering operator to the state   1,1  . The 

two-particle lowering operator is

   (1) (2) (1) (2)ˆ ˆ ˆ ˆ ˆ ˆ ˆ
x y x x y yS S iS S S i S S    . (8.C.22) 

 Applying this operator to the state   1,1 ,z z   yields

   (1) (2) (1) (2)

ˆ ˆ1,1 ,
ˆ ˆ ˆ ˆ, , , ,

, , ( ) , ( ) , .
2

x x y y

S S z z

S z z S z z iS z z iS z z

z z z z i i z z i i z z

  (8.C.23) 

 Using eq. (7.21) yields

   
1/ 2ˆ 1,1 1(1 1) 1(1 1) 1,0

2 1,0 .

S   (8.C.241) 

 Combining these last two equations, we fi nd that

   

11,0 , , , ,
2 2
1 , , .
2

z z z z z z z z

z z z z
  (8.C.25) 
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 We’ve found all three eigenstates corresponding to the quantum number   1s  , so the 
fourth and fi nal eigenstate must have a different value for  s . There’s only one possible 
value for  s  that has only a single eigenstate, and that’s   0s  , which has the correspond-
ing eigenstate   0,0  . In problems 8.C.3 and 8.C.4 you’ll show that

   10,0 , ,
2

z z z z    . (8.C.26)       

   8.C.3  PROBLEMS    

           8.C.1*     Verify that   1, 1 ,z z   (i.e., verify that this state corresponds to the total 
spin quantum numbers   1s  ,   1sm  ).  

      8.C.2*     Verify that   11,0 , ,
2

z z z z   (i.e., verify that this state corresponds 

to the total spin quantum numbers   1s  ,   0sm  ).  
      8.C.3     Find the state   0,0   by noting that it must be orthogonal to all three of the   1s   

states.  
      8.C.4*     Verify that   10,0 , ,

2
z z z z   (i.e., verify that this state corre-

sponds to the total spin quantum numbers   0s  ,   0sm  ).  
      8.C.5     Calculate the expectation values of   2Ŝ   and   ̂ zS   for two spin-1/2 particles in the 

state   ,x x  .                   



         CHAPTER 9 

Time Evolution and the 
Schrödinger Equation  

   1.     The alternative to this is the Heisenberg picture, in which states don’t change in time, and operators 
are time dependent. These two pictures are equivalent. Here we will concentrate on the Schrödinger picture; 
for more information on the Heisenberg picture, see chap. 16. 

    Thus far we’ve described a number of different quantum systems. We’ve discussed 
quantum states, operators that change states, and measurements that project systems 
into certain states. However, we haven’t described how quantum systems evolve in 
time. In classical physics we can use Newton’s laws, or Lagrange’s or Hamilton’s equa-
tions, to describe how systems evolve. In quantum mechanics it is the Schrödinger 
equation that describes temporal evolution. 

      9.1    THE TIME-EVOLUTION OPERATOR   

 In the Schrödinger picture of quantum mechanics states evolve in time   t  , 
and observables are time independent.   1    We know that operators change one state into 
another, so we can use an operator to change the state at some initial time   0t   into 
a state at a later time   t  :

  0 0
ˆ ,t U t t t  . (9.1)

We will generally take   0 0t  , and defi ne   0
ˆ ˆ , 0U t U t t  , so

  ˆ 0t U t  . (9.2) 

 We’ll assume that our states are normalized at   0t  , and we’d like them to remain 
that way as they evolve in time. This means
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  †ˆ ˆ0 0 0 0 1t t U t U t  , (9.3)

or

  † ˆˆ ˆ 1U t U t  . (9.4)

Thus,   Û t   is unitary, and is referred to as the unitary time-evolution operator. 
 Think about a system evolving for an infi nitesimally small amount of time   dt . The 

state will be nearly the same as the initial state, so   Û t   will be nearly   ̂1 , and we’d 
expect the difference from   ̂1  to be linear in   dt :

  ˆ ˆˆ 1 tU dt iG dt . (9.5)

In this equation   ˆtG   is the generator of temporal evolution, which is analogous to the 
generator of rotation we discussed in sec. 7.5. Substituting eq. (9.5) into eq. (9.4), and 
keeping terms to fi rst order in   dt , yields

  

† †

†

ˆ ˆ ˆ ˆˆ ˆ 1 1

ˆ ˆ ˆ1

1̂ .

t t

t t

U dt U dt iG dt iG dt

i G G dt

  (9.6)

So   †ˆ ˆ
t tG G  , and   ˆtG   must be Hermitian [the  i  in eq. (9.5) is necessary to ensure that this 

is the case].    

   9.2    THE SCHRÖDINGER EQUATION     

   9.2.1    The Hamiltonian   

 In classical mechanics the generator of temporal evolution is the Hamiltonian, so we’ll 
take   ˆ ˆ

tG H  , where   Ĥ  is the Hamiltonian operator. In classical physics the Hamiltonian 
tells us the total energy, so   Ĥ  is the energy operator; it is Hermitian and corresponds to 
an observable. From eq. (9.5) we see that   ˆtG   has units of   1s  , or frequency. We can take 
a hint from Planck’s relation between energy and frequency, 

   E hf  , (9.7)

to write   ˆ ˆ /tG H  . Equation (9.5) then becomes

  ˆˆ ˆ1 iU dt Hdt  . (9.8) 

 This equation looks remarkably similar to eq. (7.41) for rotation. We can follow 
the same procedure as in sec. 7.5, and use eq. (9.8) to write a differential equation for 
  Û t  :

  ˆ ˆ ˆd iU t HU t
dt

 . (9.9)
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This is the temporal equivalent to eq. (7.46). Equation (9.9) is the Schrödinger equation 
for   Û t  . Applying it to   0   yields

  ˆ ˆ ˆ0 0d iU t HU t
dt

 . (9.10)

Using eq. (9.2), we fi nd

  ˆd it H t
dt

 , (9.11)

which is the Schrödinger equation for the time evolution of a state. If you’ve encoun-
tered the Schrödinger equation before, it probably didn’t look much like this. In  chapter 
 11   we’ll reformulate it to make it look more familiar.    

   9.2.2    Solutions to the Schrödinger Equation   

 Let’s solve eq. (9.9). We’ll make the assumption that the Hamiltonian   Ĥ  is independent 
of time, which is true for a large number of important problems. With this assumption, 
and the initial condition   ˆˆ 0 1U  , the solution to eq. (9.9) is

  
ˆ /ˆ iHtU t e  . (9.12)

Substituting this into eq. (9.2) yields

  ˆ / 0iHtt e  . (9.13) 

 The Hamiltonian is the energy operator, so its eigenstates are the energy eigenstates, 
and its eigenvalues are the allowed energies   nE  :

  ˆ n n nH E E E  . (9.14)

If the initial state is an energy eigenstate,   0 nE  , then eq. (9.13) tells us that the 
state at a later time will be

  

ˆ /

/

.

iHt
n

iE tn
n

i tn
n

t e E

e E

e E   

(9.15)

Here we’ve used eqs. (9.7) and (9.14). Remember, we can only substitute   nE   in place of 
  Ĥ  in the argument of the exponential because   nE   is an eigenstate of   Ĥ .   2    

 Note that the state in eq. (9.15) does not change in time! The overall phase changes 
in time, but the state remains   nE  . Recall that our solution is applicable to the case of 

    2.     Refer to sec. 7.5 for more discussion of this. 
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a time-independent Hamiltonian, but otherwise this result is quite general. If the Ham-
iltonian is time independent, and the system starts in an energy eigenstate, it will remain 
in that state for all time. 

 In order for the state to change in time, we need to start in a state that is  not  an 
energy eigenstate. For example, the initial state could be a linear combination of two 
states with different energies: 

   1 1 2 20 c E c E  . (9.16)

At later times the state will become

   

ˆ /

ˆ ˆ/ /
1 1 2 2

/ /1 2
1 1 2 2

1 2
1 1 2 2

2 11
1 1 2 2

0

.

iHt

iHt iHt

iE t iE t

i t i t

i ti t

t e

c e E c e E

c e E c e E

c e E c e E

e c E c e E
  

(9.17)

The overall phase factor in the front does not change the state, but the relative phase 
factor does. We can see that this state oscillates in time at frequency   2 1 , which is 
the frequency difference of the individual states.     

   9.3    EXPECTATION VALUES   

 We can also describe the time dependence of expectation values. Let’s start with the 
expectation value of the Hamiltonian. Once again, we will assume that   Ĥ  itself is time 
independent, so any time dependence to its expectation value comes from the time 
dependence of the state. The expectation value of   H  is given by

  
ˆ ˆ/ /

ˆ ˆ/ /

ˆ

ˆ0 0

ˆ0 0

ˆ0 0

0 ,

iHt iHt

iHt iHt

H t t H t

e He

e e H

H

H t

 

 (9.18)

where we’ve used the fact that any function of   Ĥ  commutes with   Ĥ . 
 We have not assumed anything about the state in eq. (9.18). In particular, we have 

not assumed that the initial state is an eigenstate of   Ĥ , so the state itself will in general 
change in time. Despite this fact, the expectation value of the Hamiltonian is constant. 
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Why? Remember that the Hamiltonian is the energy operator, so eq. (9.18) says that 
the expectation value of the energy does not change in time. If the Hamiltonian has no 
time dependence, energy is conserved. In this light, eq. (9.18) makes a great deal of 
sense. 

 What about the expectation values of other observables? If  A  is a time-independent 
observable, we can write the rate of change of its expectation value as

  ˆ( ) ( )

ˆ ˆ( ) ( ) ( ) ( )

d dA t A t
dt dt

d dt A t t A t
dt dt

 

 (9.19)

  

ˆ ˆˆ ˆ( ) ( ) ( ) ( )

ˆˆ( ) , ( ) .

i it HA t t AH t

i t H A t  

Here we have used the Schrödinger equation [eq. (9.11)]. If we know the commutator 
of   Ĥ  and   Â , we can write down a differential equation for   A  . More importantly, for 
our purposes here, eq. (9.19) says that if   Â  is independent of time, and commutes with 
the Hamiltonian, the expectation value of  A  will be constant in time. In this case   A   
is a constant of the motion; it is a conserved quantity. This is true even if the state is 
changing in time.    

   9.4    SPIN-1/2 PARTICLE IN A MAGNETIC FIELD   

 We’ve been discussing time dependence in general terms. Now let’s discuss a specifi c 
example, that of a spin-1/2 particle placed in a magnetic fi eld. 

 The energy of magnetic dipole (with dipole moment    ) in a magnetic fi eld   B   is 
given by eq. (6.1). Since the Hamiltonian is the energy, we have 

   H B  . (9.20)

Assume that the magnetic fi eld points in the  z -direction:   zuBB  . Recall that     is 
related to the spin of a particle by   S , where     is the gyromagnetic ratio. The Ham-
iltonian is then 

   zH S B . (9.21)

We’ll treat the fi eld classically, so the Hamiltonian operator is 

   
ˆˆ

ˆ ,
z

z

H S

S

B   (9.22)

where   B   has units of   1s   and is called the Larmor frequency. 
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 Time evolution is most easily dealt with using a basis consisting of the eigenstates 
of   Ĥ , so we need to fi nd these eigenstates. We often say that we need to diagonalize   Ĥ , 
because the matrix for   Ĥ  is diagonal in a basis consisting of its eigenstates. In this case, 
however, eq. (9.22) tells us that   ˆˆ

zH S  , so the eigenstates of   Ĥ  are the same as the 
eigenstates of   ̂ zS  . We already know what these states are:   z   and   z  . 

 Assume that at   0t   we start in state   z   (spin parallel to   B  ). Equation (9.13) then 
tells us that 

   

ˆ /

ˆ /

( / 2) /

/ 2 .

iHt

i S tz

i t

i t

t e z

e z

e z

e z

  (9.23)

The state acquires a time-dependent phase shift, but does not change in time. 
 Suppose, instead, that we start in the state   x   at   0t   (spin perpendicular to   B  ). 

To fi nd the time evolution of this state, we should express   x   in terms of   z   and 
  z  , because they are the eigenstates of   Ĥ . Doing this, we fi nd that the state at future 
times is

  ˆ /

ˆ /

ˆ ˆ/ /

( / 2) / ( / 2) /

/ 2

1
2

1
2

1
2

1 .
2

iHt
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i S t i S tz z

i t i t

i t i t

t e x

e z z

e z e z

e z e z

e z e z

  

 (9.24)

At   / 2t   the state is 

  / 4 / 2

/ 4

1/ 2
2

.

i i

i

t e z e z

e y

   
(9.25)

At twice this time,   /t  , the state is 

  / 2

/ 2

1/
2

.

i i

i

t e z e z

e x

  
(9.26)
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 Clearly the state is changing in time, and the spin appears to be precessing about the 
 z -axis. We can confi rm this by looking at the time dependence of the expectation value 
of   S , which is given by 

   x x y y z zt S t S t S tS u u u  . (9.27)

The expectation value for the spin along the  x -direction is: 

  

/ 2 / 2

ˆ

1 1ˆ
2 2

1
2 2 2

x x

i t i t i t i t
x

i t i t

S t t S t

e z e z S e z e z

z e z z e z

  

 

(9.28)

  

4

cos ,
2

i t i te e

t  

where we’ve used eqs. (6.14) and (6.15). This expectation value oscillates at the Lar-
mor frequency. The expectation value for the spin along the  y -direction is 

  

/ 2 / 2
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2 2

1
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 (9.29)

where we’ve used eq. (6.26). This expectation value also oscillates at the Larmor fre-
quency, but is out of phase with   xS t  . Finally, the expectation value for the spin 
along the  z -direction is 

  

/ 2 / 2

ˆ

1 1ˆ
2 2

1
2 2 2

1 1
4
0,

z z

i t i t i t i t
z

i t i t

S t t S t

e z e z S e z e z

z e z z e z

  

(9.30)
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which is time independent. 
  Figure  9.1   depicts   tS  , and you can see that the expectation value of the spin does 

indeed precess around the direction of the applied fi eld. This behavior would describe, 
for example, the spin of a hydrogen nucleus (a proton) in a static magnetic fi eld.     

 Normally when we describe the behavior of magnetic dipoles in magnetic fi elds, we 
fi nd that the fi eld applies a torque that causes the dipole to align with the fi eld. Since the 
magnetic dipole moment of a proton is parallel to its spin, one might therefore expect 
the spin to align with the fi eld, not precess about it. In order to understand spin preces-
sion, think about a gyroscope. A spinning gyroscope has a large angular momentum, 
and the torque exerted by the gravitational fi eld causes this angular momentum to 
precess about the direction of the fi eld, rather than causing it to align with the fi eld. 
Indeed, if the spin is not initially perpendicular to the magnetic fi eld,   S   will sweep out 
a cone centered on the magnetic fi eld (see problem 9.6), just as the angular momentum 
of a gyroscope sweeps out a cone centered on the gravitational fi eld. This classical 
analogy will be explored more fully in problem 9.11.    

   9.5    NEUTRINO OSCILLATIONS   

 In the standard model of particle physics, the fundamental particles are divided into 
the quarks and the leptons. Quarks and leptons each have three generations, ordered by 
mass, with lighter masses in the fi rst generation and higher masses in the third. Each 
generation consists of two particles of different fl avors. For the quarks, the genera-
tions are (up, down), (charm, strange) and (bottom, top); each of these also has a cor-
responding antiquark.   3    Most of the ordinary matter in the universe is made of protons 
and neutrons, which are combinations of the two lightest quarks, the up and the down. 
Each of the three generations of leptons consists of a charged particle and an associ-
ated uncharged neutrino (there are also the antiparticles for each of these). In order of 

    3.     Frequently the quarks are referred to simply by the fi rst letter of their name. 

  

z

y

x

B

S

    

  Fig 9.1     The time evolution of   S   for a spin-1/2 particle (e.g., a proton) in a magnetic fi eld. 
The particle’s spin is whose spin is perpendicular to the fi eld at   t 0 .   
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increasing mass, the charged leptons are the electron   e  , the muon    , and the tau    . 
The neutrinos are believed to have very small masses, and are simply named by their 
corresponding charged particle: electron   e , muon    , and tau     neutrinos. 

 Neutrinos interact with ordinary matter only via the weak force, which is, well, 
very weak. One way neutrinos are produced is by nuclear reactions, for example, 
fusion in the Sun. The fl ux of these solar neutrinos at the Earth’s surface is approxi-
mately   15 2 110 m s  , and they’re passing through your body 24-7, with no obvious ill 
effects. 

 Solar neutrinos are interesting because they tell us about the Sun. Detailed models 
have been developed describing the nuclear burning occurring in the Sun. These models 
predict the neutrino fl ux arising from various nuclear reactions, and astrophysicists are 
fairly confi dent in them. Combining these models with an understanding of the ways in 
which neutrinos can be detected yields predictions for the number of observed neutri-
nos in detectors here on Earth. The fi rst experiment designed to detect solar neutrinos 
began in the early 1960s. Since neutrinos interact so weakly, the detectors need to be 
very large, and even then the detection rates are extremely low. 

 By the 1970s it was apparent that there was a discrepancy between the solar models 
and the experiments. Only about one-third of the predicted number of neutrinos were 
actually detected, and this became known as the “solar neutrino problem.” This defi cit 
of solar neutrinos was confi rmed in other experiments extending into the 1990s. The 
solar neutrino problem was fi nally solved in 2002, with data from the Sudbury Neu-
trino Observatory (SNO) collaboration [9.1]. 

 Part of the problem was that the standard model of particle physics assumed that 
neutrinos were massless. If neutrinos are massless they must propagate at the speed of 
light, and all fl avors of neutrinos must then have the same speed. We now believe that 
neutrinos have very small but fi nite masses. Furthermore, the fl avor eigenstates (   e  , 
    and    ) are  not  the same as the mass eigenstates (   1  ,   2   and   3  ); the fl avor 
eigenstates are linear combinations of mass eigenstates. Since the different mass 
eigenstates have different masses, they can propagate at different speeds. Neutrino 
oscillations arise from the fact that as a linear combination of mass eigenstates propa-
gates, the phase difference between the mass states changes, resulting in a different 
linear combination. 

 Imagine the fl avor eigenstate   e  , for example, being made up of a linear combina-
tion of   1   and   2  . It is the mass eigenstates that are the energy eigenstates (more on 
this below), and which propagate at particular speeds. A neutrino that starts as   e   at 
the Sun may end up as     on Earth because the original linear combination of 
  1   and   2   has changed on propagation. If your detector is sensitive to   e ’s, but not 
   ’s, you would perceive this as a defi cit of   e ’s unless you account for the oscilla-
tions. If you think neutrinos are massless, you won’t account for the oscillation because 
there shouldn’t be any. SNO was able to confi rm the observation of neutrino oscilla-
tions, and solve the solar neutrino problem, because it was sensitive to all three neu-
trino fl avors. 

 Let’s simplify the discussion by assuming only two mass eigenstates: 

  1 cos sine x , 2 sin cose x  . (9.31)
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Here   x   corresponds to     or    , or some linear combination of the two. The 
angle     is called the mixing angle, and is a convenient parameter to describe the unitary 
transformation between the fl avor eigenstates and the mass eigenstates. 

 Neutrinos are highly relativistic particles, so we must use the relativistic expression 
for the energy

  2 2 2 2 4E p c m c  , (9.32)

where   p  is the relativistic momentum, and   m  is the rest mass. Neutrinos have very little 
mass, so most of their energy comes from their momentum, and to second order in the 
mass we can write

  
1/ 22 2

2

2 2

2

1

1 .
2

m cE pc
p

m cpc
p

  
(9.33)

States with different masses will have different energies, even if they have the same 
momentum. In terms of the zeroth order energy   0E pc , this can be rewritten as

  
2 4

0 2
0

1
2
m cE E

E
 . (9.34) 

 Assume that an electron neutrino is created with momentum   p  in a fusion reaction 
in the Sun. This neutrino is a linear combination of states with masses   1m   and   2m  . As it 
propagates toward Earth at essentially the speed of light, the mass states get out of 
phase, and the neutrino undergoes oscillations. You will show in problem 9.12 that after 
propagating a distance   L ct , the probability that the neutrino will survive, and be 
detected as an electron neutrino is

   
2 4

2 2

0
1 sin 2 sin

4e
m c LP
E c

 , (9.35)

where   2 2 2
2 1m m m   is the difference of the squares of the masses ( not  the square of 

the difference of the masses). 
 A plot of neutrino survival probability is shown in  fi g.  9.2   for data from the Kamioka 

Liquid-scintillator Anti-Neutrino Detector (KamLAND) [9.2]. KamLAND measures 
electron antineutrinos   e  produced by nuclear reactors at various distances from the 
detector.   4     Figure  9.2   clearly shows that these antineutrinos undergo oscillations as they 
propagate.    

    4.     It was electron antineutrinos   e  that were produced and measured in this experiment, so the fi gure 
plots   ( )eP  . 
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 Note that the probability in eq. (9.35) is a function of the mixing angle    , and the 
difference of the squares of the masses   2m  , but not the individual masses themselves. 
Recent experiments, such as those at SNO and KamLAND, have measured values for 
    and   2m  . At the moment there are some constraints on the neutrino masses, but no 
measurements of the masses themselves. There are experiments underway that are hop-
ing to alleviate this shortcoming. 

 For more discussion of neutrinos and neutrino oscillations, see ref.   [9.3]  .      
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         9.7  PROBLEMS         

       9.1     If we do not assume that  A  is time independent, how does the differential equa-
tion for   A   [eq. (9.19)] change?  
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  Fig 9.2     Neutrino oscillations observed by KamLAND. Electron antineutrinos   e   produced in 
nuclear reactors at various distances from the detector are measured, and the probability that 
they remain   e  ’s is plotted. The horizontal axis is   

0
L/E   in the notation of eq. (9.35).     Reprinted 

with permission from S. Abe et al., Phys. Rev. Lett.  100 , 221803 (2008). Copyright 2008 by the 
American Physical Society.   
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      9.2*     The Hamiltonian of a system is given by   ˆĤ Q , where     is a constant, 
and   Q̂  corresponds to an observable.   Q̂  is known to have 25 eigenvalues:  q i  , 
  1, 2, , 25i  , with 25 corresponding eigenstates   iq  . A series of measurements 
of a time-independent observable,   Y  , are performed on this system. 

   (a) At time   0t  , the state of the system is   12(0) q  . In general, will   Y   de-
pend on time? Why or why not?   (b) At time   0t  , the state of the system is instead 

  12 14 16
1(0)
3

q q q  . In general, will   Y   depend on time? Why or 

why not?   (c) Are there any situations in which   Y   is time independent, regard-
less of the input state? Explain.  

   Problems 9.3–9.6   concern the following system: a spin-1/2 particle is placed in a mag-
netic fi eld pointing in the  z -direction   zuBB  .  

      9.3     At   0t   the particle is in state   x  . Calculate the probabilities that the spin will 
be measured to be pointing up along the  x -,  y -, and  z -directions at time   t .  

      9.4     At   0t   the particle is in state   x  . Solve the differential equation for   xS t  . 
Compare your answer to eq. (9.28).  

      9.5     Calculate the commutator of the projection operator   ˆ zP   and   Ĥ . What does this 
say about your answer to problem 9.3?  

      9.6*     At   0t   the particle is in state   cos / 2 sin / 2in z e z  , which 
is a state corresponding to spin up along the direction   nu   (see problem 6.13). 
Calculate   tS  , and describe its motion.  

      9.7     A spin-1/2 particle is placed in a magnetic fi eld pointing in the  x -direction 
  xuBB  . At   0t   the particle is in state   z  . Calculate the expectation value of 
  S  at time   t .  

      9.8     A spin-1 particle is placed in a magnetic fi eld pointing in the  z -direction   zuBB  . 
At   0t   the particle is in state   1, 1 1/ 2 1,1 2 1,0 1, 1x  . Calcu-
late the expectation value of   S  at time   t .  

      9.9     A system of two spin-1/2 particles (complement 8.C) is placed in a magnetic 
fi eld pointing in the  z -direction   zuBB  . At   0t   the system is in state   1,0  . 
Calculate the probability   1 2, ,P z z t  .  

      9.10     A system of two spin-1/2 particles (complement 8.C) is placed in a magnetic 
fi eld pointing in the  z -direction   zuBB  . At   0t   the system is in state   ,z z  . 
Calculate the probability   1 2, ,P z z t  .  

      9.11     A classical spinning sphere with uniformly distributed charge   q  and mass 
  m  has a magnetic dipole moment   

2
q
m

L , where   L   is its angular momen-

tum. At   0t   the angular momentum is   xLL u  , and the sphere is placed in 
a magnetic field pointing in the  z -direction   zuBB  . Describe the motion of 
  t  , assuming that   L  is extremely large.  

      9.12*     A neutrino is created in state   e  , with momentum   p . Show that after propa-
gating a distance   L ct , the probability that it will be detected as an electron 
neutrino is given by eq. (9.35).  
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      9.13*     Using the data in  fi g.  9.2  , and assuming that antineutrinos behave in the same 
manner as neutrinos (although there is some recent evidence to suggest that 
maybe they don’t completely), estimate the difference of the squares of the 
masses   2m  . Express your answer in units of   2 4eV / c  .  

      9.14*     A particular system has three basis vectors:   a  ,   b   &   c  , which are eigenstates 
of the observable   O . In this basis, the Hamiltonian is given by

  
1

1

2

0
ˆ * 0

0 0
H   ,

  where   1 2&   are real-valued constants, and     is complex. 
   (a) Find the allowed energies of this system.   (b) At   0t   the system is placed in 

state   a  . What is the probability that a measurement of   O  at time   t  will yield   b ?      



         COMPLEMENT 9.A      

  Magnetic Resonance   

 In this complement we’ll discuss a quantum system that has a time-dependent Hamilto-
nian. Because the Hamiltonian is not time independent, many of the results in  chapter 
 9   are not directly applicable. The system we will consider is that of a particle with spin, 
and hence a magnetic dipole moment, situated in an oscillating magnetic fi eld. As we 
will see, the spin can be made to oscillate resonantly with the time-dependent fi eld, a 
condition known as magnetic resonance. In nuclear magnetic resonance (NMR) it is the 
spin of atomic nuclei that oscillates, while in electron spin resonance (ESR) [or elec-
tron paramagnetic resonance (EPR)] it is the spin of unpaired electrons that oscillates.   

   9.A.1    Schrödinger Equation   

 A particle with spin-1/2 is placed in a magnetic fi eld that consists of a component along 
the  z -direction that is static, and a component along the  x -direction that oscillates at 
angular frequency    . The fi eld is thus  

  cosz z x ztu uB BB  , (9.A.1) 

 and the Hamiltonian is 

  

0 1

ˆ ˆ
ˆ ˆ cos

ˆ ˆcos .
z z x x

z x

H

S S t

S t S

B B

B

  (9.A.2) 

 Here we have defi ned two different Larmor frequencies 

  0 zB , 1 xB  . (9.A.3) 

 The particle starts in state   (0) z  , and we want to fi nd   t  . Since the Ham-
iltonian is time dependent, we need to go back to the original Schrödinger equation 



9:  T IME EVOLUTION AND THE SCHRÖDINGER EQUATION  •   207 

  ˆd it H t
dt

.  (9.A.4) 

 We can write the state as 

  ,

t a t z b t z

a t
b t

  
(9.A.5)

 

 where   a t   and   b t   are the probability amplitudes that the system is in the states   z   
and   z  , respectively. Their square magnitudes are the probabilities that the particle 
will be measured to have spin-up and spin-down. The initial conditions are 

  0 1
0

0 0
a
b

.  (9.A.6) 

 Written in matrix form, the Hamiltonian is 

  

0 1

0 1

1 0

1 0 0 1ˆ cos
0 1 1 02 2

cos
,

cos2

H t

t
t

  (9.A.7) 

 and the Schrödinger equation becomes 

  0 1

1 0

cos
cos2

a t t a td i
b t t b tdt

.  (9.A.8) 

 Multiplying, this becomes a set of coupled differential equations: 

  0 1 cos
2 2

i id a t a t t b t
dt

 , (9.A.9) 

  01 cos
2 2

iid b t t a t b t
dt

 . (9.A.10) 

 When performing magnetic resonance experiments, the strengths of the fi elds sat-
isfy   z xB B  , which means   0 1 . The dominant terms in our coupled equations 
are then ones proportional to   0 . In the limit that we can ignore the   1  terms com-
pletely, the solution to these equations is 

  / 200 i ta t a e  , (9.A.11) 

  0 / 20 i tb t b e  . (9.A.12) 



 208   •  Q U A N T U M  M E C H A N I C S

 This suggests that we should factor out the exponentials, and solve eqs (9.A.9) and 
(9.A.10) using the substitution 

  / 20i ta t c t e  . (9.A.13) 

  / 20i tb t d t e  . (9.A.14) 

 The corresponding initial conditions become 

  0 1
0

0 0
c
d

 . (9.A.15) 

 Differentiating eq. (9.A.13) yields 

  
/ 2 / 20 0 0

/ 20 0

2

.
2

i t i t

i t

id da t c t e e c t
dt dt

i da t e c t
dt

  (9.A.16) 

 Substituting eqs. (9.A.14) and (9.A.16) into eq. (9.A.9), we fi nd 

  

/ 2 / 20 0 10 0

1 0

1 0

cos ,
2 2 2

cos
2

.
4

i t i t

i t

i ti t i t

i i ida t e c t a t t d t e
dt

id c t t d t e
dt

i e e d t e

  (9.A.17) 

 One last simplifi cation yields 

  1 0 0
4

i t i tid c t e e d t
dt

 . (9.A.18) 

 Similarly, eqs. (9.A.13) and (9.A.14) can be substituted into eq. (9.A.10) to yield 

  1 0 0
4

i t i tid d t e e c t
dt

 . (9.A.19) 

 While eqs. (9.A.13) and (9.A.14) were motivated by assuming that   0 1 , we 
have not yet actually made that assumption. Equations (9.A.13) and (9.A.14) are a 
substitution, and as long as we allow   c t   and   d t   to have any arbitrary time depend-
ence, eqs. (9.A.18) and (9.A.19) are completely general. 

 Now, however, we’ll assume   0 . In other words, we’ll assume that the fre-
quency of the oscillating magnetic fi eld is nearly resonant with the Larmor frequency 
associated with the strong static fi eld. The frequency of the applied fi eld is a knob that 
an experimenter can easily adjust, and this condition is easy to satisfy. If   0 , terms 
in eqs. (9.A.18) and (9.A.19) that oscillate at   0  will oscillate slowly, while terms 
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that oscillate at   0  will oscillate rapidly. In a typical nuclear magnetic resonance 
experiment   8

0 10 rad/s  (the gyromagnetic ratio of a proton is   8 -1 -12.68 10 s Tp  , 
and fi eld strengths are 1T or higher), and these rapidly oscillating terms quickly aver-
age to 0 and can be ignored. With the approximation   0 , which is known as the 
rotating-wave approximation (RWA), eqs. (9.A.18) and (9.A.19) become 

  1 0
4

i tid c t e d t
dt

 . (9.A.20) 

  1 0
4

i tid d t e c t
dt

 . (9.A.21)    

   9.A.2    Solution   

 Equations (9.A.20) and (9.A.21) represent a pair of coupled fi rst-order linear differen-
tial equations. They are most easily solved by uncoupling them. Start by solving eq. 
(9.A.20) for  d t  : 

  0

1

4 i t dd t e c t
i dt

 . (9.A.22) 

 Now differentiate eq. (9.A.20): 

  

2
1 10 0

02

1 0 0
0

1

1 10 0

2
1

0 2

4 4
4

4

4 4

,
4

i t i t

i t i t

i t i t

i id dc t i e d t e d t
dtdt

de e c t
i dt

i ie e c t

di c t c t
dt

  (9.A.23) 

 where we’ve used eqs. (9.A.21) and (9.A.22). Rearranging yields 

  
22

1
02 2 0

4
d dc t i c t c t

dtdt
 . (9.A.24) 

 This is a second-order, linear differential equation, and   c t   has been decoupled from 
  d t  . 

 We anticipate that the solutions to eq. (9.A.24) will be oscillatory, so let’s assume a 
solution of the form 

  i tc t e  . (9.A.25) 

 Substituting this into eq. (9.A.24) yields 
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2
2 1

0 2

2
2 1

0 2

0,
4

0,
4

i c t i i c t c t
  (9.A.26) 

 which is a quadratic equation for   . The solutions are 

  

2 2
0 0 1

0

( / 2)

2

,
2

R

  (9.A.27) 

 where we’ve defi ned the generalized Rabi frequency   R   (after Isidor Rabi) as   5    

  2 2
0 1( / 2)R  . (9.A.28) 

 The solution for   c t   is then 

  1 2
i t i tc t c e c e  , (9.A.29) 

 where the constants   1c   and   2c   are used to satisfy the initial conditions. Before doing 
this, however, we need to fi nd the solution for   d t  . This is most easily done by substi-
tuting eq. (9.A.29) into eq. (9.A.22), which yields 

   

0
1 2

1

0
1 2

1

4

4 .

i t i t i t

i t i t i t

dd t e c e c e
i dt

e i c e i c e
i

  (9.A.30) 

 Using eqs. (9.A.29) and (9.A.30), along with the initial conditions [eq. (9.A.15)], 
we fi nd 

  1 2 1c c  , (9.A.31) 

  1 2 0c c  . (9.A.32) 

 The solution to these equations is 

  1
R

c  , (9.A.33) 

  2
R

c  . (9.A.34) 

    5.     The Rabi frequency is equal to the generalized Rabi frequency on resonance (  0  ). 
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 These can be substituted into eqs. (9.A.29) and (9.A.30) to obtain the fi nal expressions 
for   c t   and   d t  .    

   9.A.3    Rabi Oscillations   

 We are interested in the probabilities that the particle will be measured to have either 
spin-up or spin-down. We assumed that the particle started with spin-up at  0t  , so 
let’s examine  ,P z t  , which represents the probability that its spin fl ips to spin-down. 
Using eqs. (9.A.14) and (9.A.30), we fi nd 

  

2

2

2

1 2
1

,

4 .i t i t

P z t b t

d t

c e c e

  (9.A.35) 

 Substituting eqs. (9.A.27), (9.A.33), and (9.A.34) into this equation yields 

  

2

1

2 2
/ 2 / 20 0

2 2
1

2
20 0 / 2 / 2

2 2
1

22 2
0 2
2 2

1

2
max

4,

16

4sin
2

sin

i t i t

R R

i t i tR R

R

R R i t i tR R

R

R
R

R

P z t e e

e e

e e

t

P

max

2
1 1 cos .
2

R

R

t

P t

  (9.A.36) 

 Here the maximum probability is 

  

22 2
0

max 2 2
1

4 R

R
P  . (9.A.37) 

 Equation (9.A.36) is known as Rabi’s formula, and it is plotted as a function of   t  in fi g. 
9.A.1. This fi gure shows that the probability of a spin fl ip oscillates at the generalized 
Rabi frequency.  
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 We can rewrite the expression for   maxP   by using eq. (9.A.28): 

  

22 2 2
0 0 1

max 22 2
1 0 1

4
1

22 2
1 0 1

2
1
2 2

0 1

4 ( / 2)

( / 2)

4( / 2)

( / 2)

( / 2)
.

( / 2)

P

  (9.A.38) 

 Notice that if the frequency of the driving fi eld is perfectly on resonance (  0 ) 
  max 1P  . A plot of   maxP   as a function of the drive frequency is shown in fi g. 
9.A.2. The shape of this curve is known as a Lorentzian.   

 One way to understand these results is as follows. For the moment assume that 
there is no oscillating magnetic fi eld,   0xB  , and there is only the static fi eld   zB  . The 
energy of the particle is given by   E B  . For a spin-1/2 particle there are two 
energy eigenstates: in the lower energy state   z zE B   and the dipole moment is 
parallel to   B  , while in the higher energy state   z zE B   and the dipole moment is 
antiparallel to   B  . This represents a two-level quantum system, and the energy differ-
ence between the two levels is 

   

0

2
2

.

z z

z z

E
S
B
B   (9.A.39) 

  

0
6543210

Pmax

Ω πRt

P(-z,t)

    

  Fig 9.A.1       ,P z t   is plotted as a function of   t .   
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 Without the oscillating fi eld, a particle placed in either one of these energy levels is in 
an energy eigenstate, and will thus remain in that state. In other words, the spin of the 
particle will not fl ip. 

 In order to get the spin to fl ip, and the energy to change, the particle must absorb or 
emit energy. For example, in order to move from the lower energy state to the higher 
energy state, the particle must absorb energy   0E  . This energy comes from the 
oscillating magnetic fi eld.   6    Since this fi eld oscillates at frequency    , it contains photons 
of energy   E  . The particle will be most likely to absorb photons if the photon 
energy is nearly equal to the transition energy, that is, if   0 . 

 If we drive the transition on resonance, then   max 0 1P  . If the oscillating 
fi eld is turned on for time   / Rt  , and then turned off again, we will have switched 
from state   z   to state   z   with 100% certainty, and the particle will remain in state 
  z  . A pulse of this duration is referred to as a    -pulse, because   Rt  . By choosing 
pulses of different durations, one can create states in different linear combinations of 
  z   and   z  . 

 For a given magnetic fi eld strength   zB  , the nucleus of an atom has a corresponding 
resonance frequency   0 . Different nuclei have different resonance frequencies. In 
nuclear magnetic resonance the oscillation frequency     is varied, and each of the 
resonances in a sample is identifi ed. This can be used to identify which atoms are 
present. 

 If the static magnetic fi eld strength varies with position (e.g., it has a gradient), then 
the resonance frequency will vary with position. This can be used to obtain position 
dependent information about a sample, which forms the basis of magnetic resonance 
imaging (MRI).       

   9.A.4  PROBLEMS    
     
        9.A.1     What is the resonance frequency of a hydrogen nucleus in a 4 T magnetic fi eld?  

  

1.0

0.5

0.0

ωΩ0

Δω = Ω1

Pmax(ω)

    

  Fig 9.A.2       Pmax   is plotted as a function of    .   

    6.     Oscillating magnetic fi elds generate electric fi elds, so it’s really an electromagnetic fi eld. 
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      9.A.2     A hydrogen atom is placed in a static magnetic fi eld with a strength of 8.5 
T along the  z -direction. A fi eld oscillating along the  x -direction with strength 
  610   T is then pulsed on and off. In order to be 100% certain that the nuclear 
spin will fl ip:

  (a)  What frequency should the fi eld oscillate at?
  (b) What should be the duration of the oscillating fi eld pulse?   
             



         CHAPTER 10 

Position and Momentum  

 
    
     In introductory physics we usually begin by discussing kinematics. We write down 
equations that describe objects in terms of their positions, velocities, and accelerations. 
Clearly, we are taking a very different approach to quantum mechanics. You may be 
surprised that we’re in chapter 10, and we’re only just now getting to a discussion of 
position. Why is that? 

 Recall that we began with a discussion of polarization. Polarization is a two- 
dimensional (2-D) system, so we can describe polarization states by 2-D vectors, and 
polarization operators by 2 × 2 matrices. We then moved on to spin-1/2, which is also 
2-D, and then to spin- s , which is still discrete. Position and momentum are different in 
that they are continuous, not discrete. In principle a particle can be anywhere, and 
 moving with any momentum. In this chapter we’ll extend the formalism we have been 
developing to continuous variable systems.    

   10.1    POSITION   

 For the moment we’ll concentrate on position in one dimension. The position operator 
  ̂x  is Hermitian, and corresponds to an observable; we can measure the position of an 
object. The eigenstates of   ̂x  correspond to states of defi nite position:

  ̂x x x x  . (10.1)

The states   x   are eigenstates of a Hermitian operator that corresponds to an observable, 
so they form a complete set. Because of this, we should be able to represent a general 
state     in the position basis. The complication is that the eigenvalues  x  are members 
of the set of all real numbers—they represent a continuous variable. We need to learn 
how to deal with this.   
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   10.1.1    The Wave Function   

 What do we mean by the representation of a state     in a Hilbert space described by a 
continuous variable? To answer this, let’s fi rst recall what we mean by the representation 
of a state in a discrete Hilbert space; for example, one whose basis states are   j  . In 
this space the sum of the projection operators onto the states   j   is equal to the identity 
operator:

   ̂1
j

j j  . (10.2)

Applying this operator to an arbitrary state     yields

   
1̂

.

j

j
j

j j

j
  (10.3)

It is the complex coeffi cients   j  that form the representation of     in the   j  -basis. 
 In a continuous basis we must use an integral to express the identity operator. In 

terms of the position states we have

   ̂1 dx x x  . (10.4)

Applying this to an arbitrary state yields

   

1̂ ,

,

dx x x

dx x x

dx x x

  (10.5)

where we’ve defi ned

   .x x   (10.6)

  x   is a complex function called the wave function. The wave function is the repre-
sentation of     in the   x  -basis. The wave function   x   and the state vector     both 
contain all of the information about the state of the system. Whether   x   or     is 
more useful to you at a given time depends on what you want to calculate.   1    

   1.     In eq. (10.4) the identity operator is dimensionless, and the differential  dx  has units of length. This 
means that the states   x  , and hence the wave functions   x  , must have units of   1/ length . To eliminate 
this complication, we could work with dimensionless units. If we defi ne   /actualx x L  , where  L  is a charac-
teristic length scale for the problem, then   x  is dimensionless. 
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 If you’ve studied quantum mechanics and the Schrödinger equation before, then you 
should already be familiar with   x  . The wave function we’re talking about here, and 
the wave function you learned as a solution to the Schrödinger equation, are the same. 
This fact will become more obvious in chapter 11. 

 The square magnitude of the wave function is real, positive, and properly normal-
ized, as long as the original state     is normalized:

   

2

1̂

*

1.

dx x x

dx x x

dx x x

dx x

  (10.7) 

 If we apply the identity operator of eq. (10.4) to the position eigenstate   0x  , we fi nd

   

0

0 0

0

0

1̂

x

x x

dx x x x

dx x x x

dx x x

  (10.8)

In order for the fi nal integral in this expression to yield the original state, it must be the 
case that the wave function of a position eigenstate is a delta function:

   
0 0 0 .x x x x x x   (10.9)

The delta function is discussed in complement 10.A.    
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   10.1.2    Expectation Values   

 The wave function can be used to calculate expectation values. For example, the aver-
age position of a particle is given by the expectation value   x  , and it can be computed 
with the help of eq. (10.4):

   

ˆ

ˆˆ1

ˆ

ˆ

.

x x

x

x dx x x

dx x x x

dx x x x

dx x x x

dx x x x   (10.10)

This can also be written as

   
2

x dx x x  . (10.11)

Generalizing, the average of a function of  x,    f x   is

   f x dx x f x x   . (10.12)

We’ll soon see why the functions inside the integral are typically ordered in this way. 

 Comparing eq. (10.11) to eq. (1.23) tells us that   2( )x  is a probability density, which 
is an interpretation originally due to Max Born. This means that   

2
x dx   is the prob-

ability that an object will be found in the interval between  x  and   x dx . To fi nd the 
probability that an object will be located in a non-infi nitesimal interval, for example 
  a x b , we need to integrate over that interval:

   
2

b

a

P a x b dx x  . (10.13)     
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   10.1.3    Wave Packets   

 The wave function of a real particle cannot be a delta function, because that would 
mean that the position of the particle is defi ned with infi nite precision. Real particles 
are never perfectly localized, and therefore, physically realistic wave functions must 
have a fi nite extent. Wave functions that have some spread to them are frequently 
referred to as wave packets. 

 The canonical example of a wave packet is the Gaussian wave packet, shown in 
  fi g.  10.1  . It has the functional form

   
2 2/ 4

1/ 2
1

2

x xx e  , (10.14)

where   x   is a parameter that determines the average position (i.e., the location), and     is 
a parameter that determines the spread. Using the properties of Gaussian distributions 
described in complement 10.A, you can show that the expectation value and standard 
deviation of  x , for the wave packet of eq. (10.14), are   x x   and   x  . Further prop-
erties of wave packets will be explored in complement 11.A.    

 Let’s look at an example which uses a wave function to perform some useful 
 calculations. 

 EXAMPLE 10.1 
 For a particle whose wave function is given by

   
cos

2
0

x a x a
x a

elsewhere
 , (10.15)

(a) normalize the wave function, (b) calculate the probability that the particle will be 
found in the interval   0 / 2x a  , and (c) calculate   x   and   x . 

 (a) The normalization is given by eq. (10.7). Let the normalization constant be  c ; we 
then have

  x x

ψ(x)

( ) 1/2−
2π

0

σ

    
  Fig 10.1     A Gaussian wave packet.   
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2 2 2

2

2

2

cos
2

1 sin
2

1 0 0
2

1.

a

a
x a

x a

xdx x c dx
a

xc a x
a

c a a

c a

  (10.16)

So   1/c a   and

   
1 cos

2
0

x a x a
x aa

elsewhere
 . (10.17) 

 (b) This probability can be calculated using eq. (10.13):

   

/ 2
2

0
/ 2

0

10 / 2 cos
2

1 sin
2

1 1
2 2
0.409.

a

x a

x

xP x a dx
a a

xa x
a a

  (10.18) 

 (c) To calculate these quantities we can use eq. (10.12)

   

2

2

2

2 2

1 cos
2

cos sin

4 22

0 0
4 42 2

0

a

a
x a

x a

x dx x x x

xdx x
a a

x xa x
x a a
a

a a a a

  (10.19)
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We could have obtained this same result by noting that the integrand is an odd function, 
and the integral is symmetric about the origin; therefore, the integral must be zero. To 

calculate   x  we fi rst fi nd   2x  :

   

2 2

2 2

2 2 2
3

2 3

2 2 2 2

2 2

2 2
2

1 cos
2

cos 2 sin

6

0 0
6 6

1 12 0.131 .
6

a

a
x a

x a

x dx x x x

xdx x
a a

x xax x a
x a a
a

a a a a

a a

  (10.20)

Using this:

  
1/ 22 1/ 22 0.131 0.362x x x a a  . (10.21)     

   10.2    MOMENTUM     

   10.2.1    The Translation Operator   

 To translate a state from one location to another we can use the translation operator 
  T̂ D  , which translates the state by the distance  D . Applied to a position eigenstate this 
operator yields

   T̂ D x x D  . (10.22)

Applied to a general state the translation operator yields

   

ˆ

ˆ

,

T D

dx T D x x

dx x D x

  (10.23)
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where we’ve used eq. (10.4). The wave function of this translated state is

   

.

x x

dx x x D x

dx x x D x

dx x x D x

  (10.24)

Using the fact that   x x   [eq. (10.A.13), complement 10.A], we can simplify 
this as

   

.

x dx x x D x

x D

  (10.25)

The new wave function has the same functional form as the old, but it has been shifted 
by  D . For example, if  D  is positive then   x D   is simply   x   shifted to the right 
by  D , as shown in  fi g.  10.2  .    

 Following the examples of our treatment of the rotation operator   ˆ , nR u   (sec. 7.5), 
and the time evolution operator   Û t   (secs. 9.1 and 9.2), we’ll express the operator that 
performs an infi nitesimal translation  dx  as

   ˆˆ ˆ1 x
iT dx p dx . (10.26)

  

ψ(x)

( )T̂ D

ψ x - D( )

x
0

D     
  Fig 10.2     The translation operator shifts the position of a wave function, but leaves its shape 
unaltered.   
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Here   ̂ xp   is the operator corresponding to the  x -component of momentum, and we use 
it as the generator of translation because momentum is the generator of translation in 
classical physics.   ̂ xp   is Hermitian (as our previous generators were), and corresponds 
to an observable. In analogy with secs. 7.5 and 9.2, we can use eq. (10.26) to fi nd 
the translation operator for a macroscopic translation  D , which you’ll prove in the 
problems to be

   ˆ /ˆ ip DxT D e  . (10.27)

In the problems you’ll also prove that the translation operator is unitary, and that

   †ˆ ˆT D T D  . (10.28)    

   10.2.2    The Position-Momentum Commutator   

 Let’s examine the commutation relationship between   ̂x  and   T̂ dx  . We’ll do this by 
applying the commutator to the state   x  :

   

ˆ ˆ ˆˆ ˆ ˆ,

ˆˆ

,

x T dx x xT dx x T dx x x

x x dx T dx x x

x dx x dx x x dx

dx x dx

dx x

  (10.29)

where the last line is accurate to fi rst order in  dx  (i.e., any corrections are of order   2dx   ). 
Since eq. (10.29) holds for any arbitrary position state, and the position states form a 
complete set, this equation must hold for the operators. In other words, it must be the 
case that

   ˆˆ, .x T dx dx   (10.30) 

 If we substitute eq. (10.26) into eq. (10.30) we fi nd

   

ˆ ˆˆ ˆ ˆ,1 ,1x
ix p dx x

0

ˆ ˆ,

ˆ ˆ,

.

x

x

ix p dx

i dx x p

dx

  (10.31)

Rearranging this yields
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   ˆ ˆ, xx p i  . (10.32)

In general, the operators corresponding to position along one axis, and momentum 
along a parallel axis, do not commute; for example

   ˆ ˆ ˆˆ, ,y zy p z p i  . (10.33)

In contrast, operators corresponding to position along one axis, and momentum along 
a perpendicular axis, do commute, for example,

   ˆ ˆ ˆ ˆ, , 0y zx p x p  . (10.34) 

 We know that there must be an indeterminacy relation for noncommuting observa-
bles. Using eqs. (5.21) and (10.32) we fi nd that

   1 ˆ ˆ,
2 2x xx p x p  . (10.35)

This is the famous Heisenberg indeterminacy principle, which says that the position 
and the momentum of a particle are not simultaneously well defi ned.   2       

   10.2.3    Position Representation of the Momentum 
Operator   

 Let’s apply the operator for an infi nitesimal translation to an arbitrary state:

   

†

ˆ ˆ

ˆ

,

T dx dx x x T dx

dx x x T dx

dx x x dx

dx x x dx

  (10.36)

where we’ve used eq. (10.28). To fi rst order in  dx,  we can expand the wave function 
  x dx   in a power series as

    2.     More commonly this is referred to as the Heisenberg uncertainty principle. See sec 5.5 for a discussion 
of my reason for using “indeterminacy” instead of “uncertainty.” 
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   x dx x dx x
x

 . (10.37)

Substituting eqs. (10.26) and (10.37) into eq. (10.36) yields

  

ˆ ˆ1 ,

ˆ ˆ1 ,

ˆ

,

x

x

x

i p dx dx x x dx x
x

ix p dx dx x x x dx x
x

ix dx x p dx x x x dx x
x

x dx x
x

  (10.38)

where we’ve also used eqs. (10.9) and (10.A.8) (from complement 10.A). We can sim-
plify this further as

  
ˆ

.

xx p x
i x

i x
x

  (10.39)

Since this is true for any state, it means

  ˆ .xx p i x
x

  (10.40) 

 We can use this equation to calculate the expectation value of   xp   as

  

ˆ

ˆ

.

x x

x

p p

dx x x p

dx x i x
x

dx x i x
x

  (10.41)

Furthermore, repeated applications of eq (10.40) tell us that
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  .
n

n
xp dx x i x

x   (10.42)

The ordering inside the integral is important here. Equations (10.40)–(10.42) tell us 
that   ̂ xp   is represented in the position basis as

  ̂ xp i
x

 . (10.43) 

 EXAMPLE 10.2 
 Does the wave function of eq. (10.17) satisfy the indeterminacy principle? 

 From example 10.1 we know that for this wave function   0.362x a , so we need 
to calculate   xp  . Using eq. (10.41) we fi nd,

  
2

1 cos cos
2 2

cos sin
2 22

0 .

a

x
a

a

a

x xp dx i
a a x a

i x xdx
a aa

  (10.44)

This integral is 0 because the integrand is an odd function, and the integral is symmetric 
about the origin. 

 We can fi nd   2
xp   using eq. (10.42):

   

2
2

2 2
2

2

2 2 2
2

2 2

2

1 cos cos
2 2

1 cos
24

4

.
4

a

x
a

a

a

x xp dx i
a a x a

xdx
a aa

dx x
a

a

  (10.45)

The standard deviation of   xp   becomes

   
1/ 222

2x x xp p p
a

 , (10.46)

and the uncertainty product is thus

   0.362 1.137
2 2 2xx p a

a
 . (10.47)
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The indeterminacy principle is satisfi ed, as it must be.  

 In this example we found that   0xp  . We could have obtained this result simply 
by looking at the wave function, without doing any calculation. That’s because if we 
examine the expression for   xp   in eq. (10.41), we notice that it contains a factor of  i . 
If the wave function is real, eq. (10.41) implies that   xp   will be purely imaginary. 
However,   xp   is an observable, so all measurements of it yield real values, and   xp   
must be real. The only way to reconcile these seemingly contradictory facts is if 
  0xp   when the wave function   x   is real.     

   10.3    THE MOMENTUM BASIS     

   10.3.1    Momentum States   

 The momentum operator   ̂p  is Hermitian and corresponds to an observable, therefore 
it must have eigenstates with real eigenvalues.   3    These states correspond to states of 
defi nite linear momentum:

   ̂p p p p  . (10.48)

The momentum states also form a complete set

   ̂1 dp p p  , (10.49)

and, like the position states, they are orthogonal

   p p p p  . (10.50)

The wave function in momentum space is defi ned as

   p p  . (10.51)

Here we’ve added a tilde to distinguish the momentum basis wave function from the 
wave function in the position basis. This wave function represents a probability ampli-
tude, and   

2
p dp  is the probability that the particle will have momentum between 

 p  and   p dp .   4    
 The wave function of a momentum eigenstate   p   is given in the position basis as

   p x x p  . (10.52)

    3.     From now on, unless there is the potential for confusion, we’ll assume that we’re working in one 
dimension and write   ̂p  instead of   ̂ xp  . 

    4.     Note that the momentum states and wave function have units of   1/ momentum  . 
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To calculate this we can apply   x   to the left of eq. (10.48):

   

ˆ ,

,

,p p

x p p x p p

i x p p x p
x

i x p x
x

  (10.53)

where we’ve also used eq. (10.40). Equation (10.53) is a differential equation for 
  p x  , and the solution is

   /ipx
p x ce  , (10.54)

where  c  is a normalization constant. We can determine the normalization constant from 
the orthogonality condition, eq. (10.50):

   

2 / /

2 ( ) / .

p p

ipx ip x

i p p x

p p p p

dx p x x p

dx x x

c dx e e

c dx e

  (10.55)

Comparing this to eq. (10.A.35) of complement 10.A tells us that   1 2c  , so the 
properly normalized wave function of the momentum eigenstate is

   /1
2

ipx
p x x p e  . (10.56)

We’ll discuss the physical meaning of this wave function below.    

   10.3.2    Changing Representations   

 Given the wave function in the position basis   x  , how can we determine the wave 
function in the momentum basis   p  ? One way is to use eq. (10.4), and we fi nd
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/1 ,
2

p

ipx

p p

dx p x x

dx x x

dx e x

  (10.57)

which means that   p   is a Fourier transform of   x   (see complement 10.A). To 
change in the other direction, you’ll show in the problems that

   /1
2

ipxx dp e p  ; (10.58)

  x   is the inverse Fourier transform of   p  .    

   10.3.3    Physical Interpretation   

 Consider a particle that’s in a state of defi nite momentum   0p  . Its momentum basis 
wave function is given by

   
00 0pp p p p p  , (10.59)

and its position basis wave function is

 0

0

/
0

1
2

ip x
px p x e   . (10.60)

Since the momentum basis wave function is a delta function, it is infi nitely narrow, 
and   0p  . The indeterminacy relation of eq. (10.35) then tells us that   x  . The 
probability density for fi nding the particle at a particular position is given by the square 
magnitude of eq. (10.60), which is

   
0

2 1
2p x  . (10.61)

Notice that this probability density is constant over all space, which is consistent with 
an infi nite standard deviation. 

 The wave function of eq. (10.60) corresponds to what we call a traveling wave. It 
has a defi nite momentum, so it’s “traveling,” but it exists everywhere in space—it’s not 
localized anywhere. Of course, the idea of a particle with a perfectly defi ned momen-
tum and an infi nite uncertainty in its position is an idealization. Real particles must 
have some spread to their momenta, and be at least partly localized. 
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 The indeterminacy principle tells us that the more localized the particle is (smaller 
  x ), the larger the spread of the momentum must be (larger   p ). The fact that   x   and 
 p   are Fourier transform pairs enforces the indeterminacy principle. We know that 
if one member of a Fourier transform pair becomes “narrower” the other becomes “fat-
ter”; this is a property of the Fourier transform. Other properties of the Fourier trans-
form can be found in complement 10.A. 

 EXAMPLE 10.3 
 Calculate the momentum representation of the wave function of eq. (10.17). Show that 
  p   and   2p   calculated using this representation agree with the values obtained in 
example 10.2. 

 Using eq. (10.57)

   

/

/

/
2 2 2 2

/ /
2 2 2 2

2
2

1
2

1 cos
22

sin 2 cos
2 2 2

4

2 1
4

2 2 cos
2

ipx

a
ipx

a
x a

ipx

x a

ipa ipa

p dx e x

xdx e
aa

x xi ap
a a ae

a p

a e e
a p

a pa

pa

  (10.62)

The average of the momentum can be calculated from the momentum basis wave 
function using

   

ˆ

ˆ

.

p p

dp p p p

dp p p p

  (10.63)

Substituting for   p   using eq. (10.62) yields
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2

2
2

cos
8

2

0 .

pa
ap dp p

pa   (10.64)

This integral is 0 because the integrand is an odd function. We can fi nd  2p   in a similar 
manner:

   

2

2 2
2

2

cos
8

2

pa
ap dp p

pa
 . (10.65)

This integral is most easily calculated using a program such as Maple or Mathematica. 
The result is

   
2 2

2
2 ,

4
p

a
  (10.66)

so our values for   p   and   
2p   agree with those from Example 10.2.        

   10.4  PROBLEMS    

       10.1     For a particle whose wave function is given by

   rect xx
a

,  (10.67) 

   (a) normalize the wave function, (b) calculate   x   and   x . The function   rect x   
is defi ned in complement 10.A [eq. (10.A.1)].  

      10.2     For a particle whose wave function is given by

   0 0

0x

x
x

e x
,  (10.68) 

   (a) normalize the wave function, (b) calculate the probability   0 1/P x  , 
(c) calculate   x   and   x .  

      10.3     For a particle whose wave function is given by

   
2 2

1x
a x

,  (10.69) 
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   (a) normalize the wave function, (b) calculate   P a x a  , (c) calculate   x   
and   x .  

      10.4     For a particle whose wave function is given by

  sech /x x a ,  (10.70) 

   (a) normalize the wave function, (b) calculate   0P x a  , (c) calculate   x   
and   x .  

      10.5*     Prove that   ˆ /ˆ ip DxT D e  , given the form of the infi nitesimal translation 
operator   T̂ dx   in eq. (10.26).  

      10.6*     Prove that the translation operator is unitary.  
      10.7*     Prove that   †ˆ ˆT D T D  .  

      10.8     Prove that if   ˆ ˆ,A B c , where  c  is a constant, then

   1ˆ ˆ ˆ, n nA B cnB .  (10.71) 

 [Hint: Eq. (7.8) will be useful. Start by looking at   2n  ,   3n  , etc.]  
      10.9     Prove that if   ˆ ˆ,A B c , where  c  is a constant, then

   ˆ ˆ ˆ,A f B cf B ,  (10.72) 

 where  f  is a function, and   f   is its derivative. [Hint: Expand  f  as a power series, 
and use eq. (10.71).]  

      10.10     For a particle in state    ,   x x   and   p p . This state is then translated: 

  T̂ D  . Compute   x   and   p   for state    , and compare to the results 
for the untranslated state. You may fi nd eq. (10.72) useful.  

      10.11*     Prove that   0p   for the particle in problem 10.2 by explicitly demonstrating 
that the integral is zero. You need to be very careful about the discontinuity at 
  0x  , and you will need some results from complement 10.A.  

      10.12     Verify the indeterminacy relation for the particle in problem 10.3.  
      10.13     Verify the indeterminacy relation for the particle in problem 10.4.  
      10.14*     Prove eq. (10.58).  
      10.15*     Find the momentum representation of a particle in a position eigenstate. 

Discuss how the indeterminacy principle applies to this state.  
      10.16*     Find the momentum representation of a particle in the Gaussian wave packet 

state of eq. (10.14). Use this representation to calculate   p   and   p , and to 
verify the indeterminacy relation.  

      10.17     Find the momentum representation of the state of the particle in problem 10.3. 
Use this representation to calculate   p   and   p , and to verify the indeterminacy 
relation.            



   COMPLEMENT 10.A      

  Useful Mathematics     

   10.A.1    Delta Functions   

 Consider the rectangle function, which is defi ned as

   
1 1/ 2

rect
0

x
x

elsewhere
,  (10.A.1)

and is depicted in  fi g.  10.A.1(a)  . If we let

   01 rect
x x

f x
a a

,  (10.A.2)

then we get the function shown in  fi g.  10.A.1(b)  . This function has a width of  a , and a 
height of 1/ a , so its area is 1. In the limit   0a  ,   f x   becomes infi nitely narrow, but 
infi nitely tall, and maintains an area of 1; thus, in this limit   f x   becomes the delta 
function (also known as the Dirac delta function):

   0
0 0

1lim rect
a

x x
x x

a a
.  (10.A.3)

A delta function diverges where its argument is equal to 0, and is 0 everywhere else. 
Since the “area” of a delta function is 1, we know that

   0 1dx x x .  (10.A.4)

Actually, the limits don’t need to extend all the way from     to    . As long as the limits 
of integration include the delta function, the integral will be 1, while if the limits do 
not include the delta function, the integral is 0. Other functions that approach the delta 
function as their width approaches zero, and their area is held fi xed, are:
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f(x)

xx0

1/a

a

0

rect (x)

x

1

0
-1/2 1/2

(a)

(b)

    
  Fig 10.A.1     (a) The rectangle function, and (b) the function   f x   of eq. (10.A.2).   

  x

f(x)

x0

δ (x-x0)

0

f(x0)

    
  Fig 10.A.2     If a function   f x   is multiplied by a delta function and integrated, the integral is 
simply the value of the function evaluated at the location of the delta function.   
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2 2/

0

1lim x a
a

x e
a

  (10.A.5) 

    2 20

1lim
a

ax
x a

  (10.A.6) 

    
0

sin /1lim
/a

x a
x

a x a
.  (10.A.7) 

 The delta function by itself it doesn’t make a lot of sense, but it is perfectly well 
behaved inside an integral. For example, suppose we multiply the function   f x   by 
  0x x  , and then integrate over some interval that includes the delta function. In 
regions where the delta function is zero, the product is zero, so these regions do not 
contribute to the integral. The only point that contributes to the integral is at   0x x  , so 
we must evaluate   f x   at that point. The end result is that

  0 0dx f x x x f x .  (10.A.8)

The delta function picks out the value of   f x   at the point where the delta function is 
located (see  fi g.  10.A.2  ). 

 Since the variable of integration in eq. (10.A.8) is  x , the delta function must take as 
its argument  x  minus something. If the delta function is not of that form, then it must be 
manipulated to place it in that form for eq. (10.A.8) to be useful. For example, if instead 
the integral is of the form

  0dx f x ax x ,  (10.A.9)

we need to make the substitution

   u ax, du adx .  (10.A.10)

Then the integral becomes

   0 0
1 1/ /du f u a u x f x a
a a

.  (10.A.11)

The absolute value symbol ensures that the integration goes from     to    , independent 
of whether  a  is positive or negative. This procedure is equivalent to

   0
0

1 x
ax x x

a a
.  (10.A.12)

An important special case is

   x x .  (10.A.13) 
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 The integral of the delta function is

   
0 0
1 0

x x
dx x

x .  (10.A.14)

To make this integral symmetric about zero, is standard to defi ne it to be equal to 1/2 
for   0x  . With this defi nition

   
x

dx x x ,  (10.A.15)

where the step function   x   is defi ned as

   
1 0

1/ 2 0
0 0

x
x x

x
.  (10.A.16)

Equation (10.A.15) tells us that the integral of the delta function is the step function; 
this means that the derivative of the step function must be the delta function

   d x x
dx

.  (10.A.17) 

 The derivative of the delta function   x   can be defi ned by taking the limit as 
  0a   of the derivative of one of the functions that we have used to defi ne the delta 
function [e.g., eqs. (10.A.5)–(10.A.7)]. If we multiply   f x   by   x   and integrate, we 
can compute the integral using integration by parts, and fi nd

   0
x

x
dx f x x f x x dx f x x f .  (10.A.18) 

 A number of other properties of the delta function can be found in ref. [10.A.1].    

   10.A.2    Gaussian Integrals   

 Defi ne the Gaussian wave function   x   by

   
2 2/ 4

1/ 2
1

2

x xx e .  (10.A.19)

This wave function is normalized, and the moments of  x  are given by

   

2

2 2/ 21 .
2

n n

x xn

x dx x x

dx x e

  (10.A.20)
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Some of the lower order moments are

   x x ,  (10.A.21) 

    2 2 2x x ,  (10.A.22) 

    3 2 23x x x ,  (10.A.23) 

    4 4 2 2 46 3x x x .  (10.A.24)

In the case that   0x  , the integral for the moments simplifi es to

   
2 2/ 21 1 !!

02

n
n x n n even integerdx x e

n odd integer
,  (10.A.25)

where the double factorial, for even  n , is given by

   1 !! 1 3 ... 3 1n n n .  (10.A.26)    

   10.A.3    Fourier Transforms   

 We will defi ne the Fourier transform of   x   as

   /1
2

ipxp x dx e xF .  (10.A.27)

The inverse transform is

   1 /1
2

ipxx p dp e pF .  (10.A.28)

Notice that the only difference between these two defi nitions is the sign of the argument 
of the exponential. We’ll assume that the functions we are dealing with are well enough 
behaved so that the integrals exist.   5    

 Fourier transforms always come in pairs. For example, the Fourier transform of a 
rectangle function is a sinc function (see problem 10.A.1). This means that the inverse 
transform of a sinc is a rectangle. However, since the transform and inverse transform 
integrals are the same (apart from a sign) it also means that the transform of a sinc is a 
rectangle. The widths of the functions that make up a Fourier transform pair are 
inversely related; for example, if   x   becomes broader,   p   becomes narrower. 

    5.     We have included the factor of     in the defi nition of the Fourier transform to be consistent with the 
relationship between the position and momentum wave functions. To obtain the defi nition of the Fourier 
transform used in many math texts, you may take   1 .  
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 The Fourier transform is linear:

   1 1 2 2 1 1 2 2A x A x A x A xF F F ,  (10.A.29)

and the  Shift Theorem  for Fourier transforms says that

   0 /
0

ip xe x p pF .  (10.A.30)

We can prove this using the defi nition of the Fourier transform in eq. (10.A.27):

   

0 0

0

/ //

/

0

1
2

1
2

.

ip x ip xipx

i p p x

e x dx e e x

dx e x

p p

F

  (10.A.31)

The magnitude of the Fourier transform of a real function is symmetric about the origin. 
Specifi cally, if   x pF  , and   x   is a real function, then   p p   
and   p p  . You’ll prove this in problem 10.A.2. 

 We can substitute eq. (10.A.28) into eq. (10.A.27) to obtain the following identity:

   / /1
2

ipx ip xp dx e dp e p .  (10.A.32)

We can rewrite this expression as

   /1
2

i p p xp dp dx e p .  (10.A.33)

We also know that

   p dp p p p .  (10.A.34)

These last two equations, and the fact that   x x  , tells us that

   /1
2

i p p xp p dx e .  (10.A.35)

We can rewrite this as

   / /1 1
2 2

ipx ip xp p dx e e ,  (10.A.36)

which says that the Fourier transform of a complex exponential is a delta function.         
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   10.A.4  References    

 [10.A.1] C. Cohen-Tannoudji, B. Diu, and Franck Laloë,  Quantum Mechanics  (Wiley, New 
York, 1977), Appendix II.       

   10.A.5  PROBLEMS    

           10.A.1     Show that

  
1 rect sinc

2 2
x a pa
aa

F  ,  (10.A.37) 

   where the rectangle function is defi ned in eq. (10.A.1), and

   sin
sinc

p
p

p
.  (10.A.38)  

      10.A.2     Prove that if   x pF  , and   x   is a real function, then   p p   
and   p p  .  

      10.A.3     Prove that if   x pF  , then   /0
0

ipxx x e pF  .                    
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         CHAPTER 11 

Wave Mechanics and the 
Schrödinger Equation  

    In  chapter  9   we described how the Schrödinger equation determines the dynamical evo-
lution of quantum systems, and in  chapter  10   we saw that the wave function is the posi-
tion basis representation of a quantum state. Now it’s time to join these ideas together 
to solve some new types of problems. Here we’ll discuss the temporal evolution of 
systems whose potential energy varies as a function of position. The wave-like nature 
of particles will become much more readily apparent as we do this, so this description 
of quantum mechanics is often referred to as wave mechanics. 

      11.1    THE SCHRÖDINGER EQUATION REVISITED     

   11.1.1    The Schrödinger Equation in the Position Basis   

 Previously we discussed some of the general properties of the Schrödinger equation, 

    ˆ
dH t i t
dt

 . (11.1)

The Hamiltonian   Ĥ  tells us the energy of a particle, and in general consists of the sum 
of the kinetic and potential energies. For the moment we’ll work in one spatial dimen-
sion, so the kinetic energy is 

    
2

21
2 2

pK mv
m

 . (11.2)

We’ll assume that the potential energy   V x   is independent of time, and depends 
on the position of the particle, but not its momentum. With these assumptions, the 
Hamiltonian operator becomes 
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2ˆˆ ˆ

2
pH V x
m

 , (11.3)

and the Schrödinger equation is 

    
2ˆ ˆ

2
p dV x t i t
m dt

 . (11.4) 

 By applying   x   to this equation we can obtain its representation in the position basis 

    
2ˆ ˆ

2
p dx V x t x i t
m dt

 . (11.5)

The wave function at time  t  is defi ned as   1    

    ,x t x t  . (11.6)

Using the position-basis representation of the momentum operator [eq. (10.43)], we 
can write eq. (11.5) as 

    
21 , ,

2
i V x x t i x t

m x t
 , (11.7) 

 or 

    
2 2

2 , , ,
2

x t V x x t i x t
m tx

 . (11.8)

This is the one-dimensional Schrödinger wave equation, which is simply the Schrödinger 
equation written in the position basis. If you’ve studied quantum mechanics before, this 
equation should be familiar to you. 

 Although the form of eq. (11.8) is different from the equation for waves on a string 
or electromagnetic waves, the solutions do take the form of waves. This is why the 
function   ,x t   is called the wave function.    

   11.1.2    The Time-Independent Schrödinger Equation   

 Equation (11.8) is a partial differential equation, involving both space and time deri-
vatives. One way to solve it is to use the mathematical technique of separation of 
variables. In separation of variables we write the function   ,x t   as a product of two 
functions, one of which depends on space, and the other of which depends on time:

   1.     I’ll follow the convention that the capitalized wave function   ,x t   has both time and space depend-
ence, whereas the lowercase wave function   x   is independent of time. 
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   ,x t x t  . (11.9)

Clearly, not all functions of space and time can be so factorized, and it may not be obvi-
ous that a solution of this form will be guaranteed to solve eq. (11.8). However, as long 
as the potential energy   V x   is independent of time, eq. (11.8) has solutions of the form 
in eq. (11.9). A key point here is that there are multiple solutions. Since the Schrödinger 
wave equation is linear, any linear combination of these solutions is also a solution. It 
can be proved that it is always possible to obtain a unique solution to eq. (11.8), with 
its associated boundary and initial conditions, by using a proper linear combination of 
solutions of the form in eq. (11.9):

   , n n n
n

x t c x t  . (11.10)

We’ll discuss the technique of separation of variables in detail later, in conjunction 
with our discussion of systems that have more than one spatial dimension. For now, the 
separation of eq. (11.8) using eq. (11.9) is left as problem 11.1. 

 Another way to separate the spatial and temporal parts of eq. (11.8) is to use the fact 
that we’ve already solved the time-dependent problem in  chapter  9  ! We are consider-
ing a time-independent Hamiltonian, so the time dependence of the state is given by 
eq. (9.13):

   ˆ / 0iHtt e  . (11.11)

Recall that time-dependent problems are most easily dealt with using the eigenstates 
  n   of the Hamiltonian, 

    ˆ n n nH E  , (11.12)

where the eigenvalues   nE   are the allowed energies of the system. We can write the ini-
tial state as a linear combination of energy eigenstates 

    0 n n
n

c  , (11.13)

and the wave function at   0t  ,  ,0x  , is then given by 

    

,0 0

.

n n
n

n n
n

x x

c x

c x

  (11.14)

The coeffi cients   nc   are determined by the initial conditions:
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0

0

,0 .

n n

n

n

c

dx x x

dx x x

 (11.15)  

 From eqs. (11.11) and (11.13), the state at future times is 

    

ˆ /

/

,

iHt
n n

n
iE tn

n n
n

i tn
n n

n

t c e

c e

c e

  (11.16)

where we’ve used Planck’s relation   n nE  . In the position basis this equation 
becomes 

    
,

, .

i tn
n n

n
i tn

n n
n

x t c e x

x t c e x
  (11.17)

Thus, the time dependence is determined, once we fi nd the time-independent wave 
functions   n x  . We can fi nd them by projecting eq. (11.12) into the position basis:

   
2

2

ˆ ,

ˆ ˆ ,
2

1 .
2

n n n

n n n

n n n

x H x E

px V x E x
m

di V x x E x
m dx

  (11.18)

This can be simplifi ed as 

    
2 2

22 n n n n
d x V x x E x

m dx
 , (11.19)

which is known as the time-independent Schrödinger equation. The solutions to this 
equation determine the full time-dependent wave function via eq. (11.17). 
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 Note that if we compare eq. (11.17) to eq. (11.10), we learn that when using separa-
tion of variables to solve the Schrödinger equation, the solution for the time dependence 
must be 

    i tn
n t e . (11.20)     

   11.1.3    Boundary Conditions   

 What boundary conditions must we impose on wave functions? Assume that   V x   has 
a discontinuity at   0x x  . Rearrange eq. (11.19), and integrate it about a small region 
centered on   0x x  :   2    

   
0

0 0 2
0

2
x xo

n n n n n
x xo

mdx x x x dx V x E x  . (11.21)

If the discontinuity is fi nite [  V x   is bounded] the integrand in the integral on the 
right is fi nite, so the integral will approach 0 in the limit that   0 . This means that 
  n x   is continuous in the case of a fi nite discontinuity in   V x   [clearly,   n x   is also 
continuous if   V x   is continuous]. However, if the potential energy discontinuity is 
infi nite,   n x   may be discontinuous. In all cases we require   n x   to be continuous. 
We’ve also stated before that real particles cannot be completely unlocalized, which 
means that   n x   must be normalizable.    

   11.1.4    Putting It All Back Together   

 To summarize, the procedure for solving the Schrödinger wave equation [eq. (11.8)], 
given a form of the potential energy   V x  , and a set of boundary and initial conditions, 
is then: 
   
       1.     The potential energy function and the boundary conditions determine the allowed 

energies   nE   and the time-independent wave functions   n x   by solving eq. (11.19).  
      2.     The unique solution to a given problem at   0t   is given by a linear combination of 

the   n x  ’s [eq. (11.14)]. The coeffi cients in this linear combination are deter-
mined by the initial wave function,   ,0x  , using eq. (11.15).  

      3.     The full time-dependent wave function   ,x t   is given by eq. (11.17).   
   

   Let’s see how to apply these ideas, by looking at a few examples involving different 
potential energy functions.     

    2.     Here the primes refer to derivatives with respect to  x . 
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   11.2    CONSTANT POTENTIAL–THE FREE PARTICLE   

 The time-independent Schrödinger equation takes on its simplest form when the poten-
tial energy is constant throughout all of space,   0V x V  . In this case the equation is   3    

    
2 2

022
d x V x E x

m dx
 . (11.22)

We can rewrite this as 

    
2

0
2 2

2m E Vd x x
dx

 . (11.23)

You can verify for yourself that the solutions to this equation are 

    ikxx Ae  , (11.24)

with 

    
1/ 2

0
2

2m E V
k  . (11.25)

We can rewrite this equation to express the energy as 

    
2 2

02
kE V
m

. (11.26)  

 The Schrödinger equation is a second-order differential equation, so to satisfy the 
boundary conditions we need two, linearly independent solutions. Both positive and 
negative roots for  k  in eq. (11.25) are allowed, and these are the linearly independent 
solutions. To make this more explicit, we write the solution as 

    ikx ikxx Ae Be  , (11.27)

and confi ne ourselves to the positive root in eq. (11.25). 
 Ordinarily at this point we would apply boundary conditions, but since the potential 

energy is assumed to be constant everywhere, there are no boundary conditions; we are 
examining the behavior of a free particle. The wave functions of eq. (11.27) extend 
throughout all space, and  k  can take on any positive real value (  0k  ). From eq. (11.26), 
we see that this implies   0E V  , which makes sense physically because the total energy 
must be larger than the potential energy. 

 From eq. (11.26) we fi nd that the kinetic energy  K  is given by 

    
2 2 2

0 2 2
k pK E V
m m

 , (11.28)

    3.     Here we’ve suppressed the subscripts that index the energies and wave functions. 
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where we’ve used eq. (11.2). This is consistent with the de Broglie relation   p k  . For 
every value of  k  there is a corresponding energy, and for every energy there is a corre-
sponding angular frequency   /E  . We can put the time dependence into eq. (11.27) 
using the method discussed in the previous section, and obtain 

    , i kx t i kx tikx ikx i tx t Ae Be e Ae Be  . (11.29)

The wave with amplitude  A  is traveling in the positive direction, while that with am-
plitude  B  is traveling in the negative direction. The unique solution to the full time-
dependent problem, which fi ts the initial conditions, will be a linear combination of 
solutions of the form in eq. (11.29), with different values of  k . 

 Comparing eq. (11.24) to the wave function of a momentum eigenstate, eq. (10.56), 
we fi nd that these wave functions are the same if   /k p  , which is again equivalent to 
the de Broglie relation, and if   1/ 2A  . Thus, the free particle solutions we have 
obtained in eq. (11.24) correspond to solutions which have well-defi ned momenta. 

 From our discussion in section 10.1, we know that the unlocalized solutions of 
eq. (11.24) are unphysical. Any real particle must be at least partially localized, so a 
physical solution will be represented by a wave packet. For a discussion of wave 
packet solutions to eq. (11.22), and their time evolution, see complement 11.A.    

   11.3    POTENTIAL STEP   

 Another example is that of the potential step, which is described by 

    
0

0 0
0

x
V x

V x
 , (11.30) 

 and is pictured in  fi g.  11.1  (a). Since the potential is constant in each of the two regions 
(to the left and right of the origin) we can use the results of the previous section to 
  determine the solution to the time-independent Schrödinger equation in each region. To 
the left of the origin the solution is 

    1 1
1 1 0ik x ik xx A e B e x  , (11.31)

where 

    
1/ 2

1 2
2mEk  , (11.32)

and  E  is the energy of the particle. Similarly, to the right of the origin we have 

    2 2
2 2 0ik x ik xx A e B e x  , (11.33)

where 

    
1/ 2

0
2 2

2m E V
k . (11.34)  
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 As in the previous section, we take the positive square root in eqs. (11.32) and (11.34).    
 Before going any further with the mathematics, let’s think more carefully about the 

physics. The step function potential of  fi g.  11.1  (a) represents a barrier, and  fi g.  11.1  (b) 
shows a particle incident on it. As shown in  fi g.  11.1  (c), the interesting physical ques-
tion is, “What is the probability that the particle will be transmitted, or refl ected?” 

 In  fi g.  11.1   the incident wave is on the left of the boundary and traveling to the right, 
so it is the wave of amplitude   1A   in eq. (11.31). The refl ected wave is on the left of the 
boundary and traveling to the left, so it is the wave of amplitude   1B   in this same equation. 
The transmitted wave is on the right of the boundary and traveling to the right, so it is the 
wave of amplitude   2A   in eq. (11.33). There is no wave on the right of the boundary 
traveling to the left, so we have   2 0B   in eq. (11.33). 

 There are two different solutions, depending on whether the particle energy is larger 
or smaller than the height of the potential step. We’ll examine each of these separately 
below. Before we do that, however, we need to explore the concept of the probability fl ux.   

  

V (x)

V 0

x

0

(a)

(c)

(b)

x

x

0

0

0

    

  Fig 11.1     (a) A potential step. (b) A particle (represented as a wave packet) is incident on the 
step from the left. (c) The particle is either transmitted or refl ected at the step.   
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   11.3.1    Probability Flux   

 The square magnitude of the wave function represents a probability density. This 
 remains true when we add time dependence:   

2
,x t   is a time-dependent probability 

density. Taking the time derivative of   
2

,x t  , and using the Schrödinger equation 
[eq. (11.8)], yields 

   

2

2 2

2 2

2 2

2 2

,

1 1
2 2

.
2

x t
t t

t t

V x V x
i m i i m ix x

i m x x
   (11.35)

Let’s defi ne 

    ,
2xj x t

i m x x
 . (11.36)

The spatial derivative of   ,xj x t   is 

  

2 2

2 2

2 2

2 2

,
2

,
2

xj x t
x i m x x x xx x

i m x x  

which means that 

    
2

, ,xx t j x t
t x

 . (11.38)

In three dimensions,   ,xj x t   is the  x -component of the vector   , tj r  , 

    , Im
2

t
i m m

j r  , (11.39) 

 and eq (11.38) becomes 

    2
, ,t t

t
r j r . (11.40)  

(11.37)
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 If we integrate eq. (11.40) over some region in space    , we fi nd 

      (11.41)

Here we’ve used the divergence theorem to replace the volume integral over     by an 
integral over the closed surface  S  that bounds    . The integral in parentheses on the left 
is the probability that the particle is found inside    , while the expression on the right 
represents the inward fl ux of   , tj r   through  S  (the integral itself is the outward fl ux, 
while the minus sign changes it to the inward fl ux). Taken as a whole, eq. (11.41) says 
that the rate of change of probability in some region of space is equal to the inward fl ux 
of   , tj r   through the surface bounding that region. For this reason we refer to   , tj r   
as the probability fl ux.   4       

   11.3.2      E   >   V   0    

 Back to the potential step. Assume that   0E V  , so   2k   [eq. (11.34)] is real and positive. 
We now need to apply the boundary conditions. The wave function must be continuous 
at   0x  , so eqs. (11.31) and (11.33) yield (for   2 0B  , as described above):

   1 1 2A B A  . (11.42)

The derivative of the wave function must also be continuous at this point, because the 
discontinuity is fi nite, so the same equations tell us that 

    1 1 1 1 2 2ik A ik B ik A  . (11.43)

We can solve these equations for   1B   and   2A   in terms of the incident amplitude   1A  . 
You’ll show in problem 11.2 that the solutions are 

    1 2
1 1

1 2

k k
B A

k k
 ,   1

2 1
1 2

2k
A A

k k
  . (11.44) 

    4.     Compare eq. (11.40) to the continuity equation of electromagnetism, which says 

  , ,t t
t

r J r , 

 Here   , tr   is the charge density and   , tJ r   is the current density [11.1]. The continuity equation is a 
statement about the conservation of charge. Because of the similarity, some people refer to   , tj r   as the 
probability current. 
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 We’ll denote the probability fl ux for the wave with amplitude   1A   by   1 ,A
xj x t  , and it 

is given by 

    

1 1 1 11
11

21
1

2
1 1

, Im

,

i k x t i k x tA
xj x t A e A e

m x
k A
m

v A

  (11.45)

where 

    1 1
1

k p
v

m m
 , (11.46) 

 and   1v   is the speed of the particle to the left of the step. Similarly, we fi nd that 
  1

2
1 1,B

xj x t v B  , where the negative sign indicates that the wave with amplitude   1B   
is moving to the left. 

 The probability that the particle will be found to refl ect,  R , is given by 

    
1

1

22 2 2
01 1 1 1 2

2 2 2 2
1 21 1 1 0

,
,

B
x
A
x

E E Vv B Bj x t k k
R

j x t k kv A A E E V
 . (11.47)

It is necessary to take the magnitude because the probability must be positive. If a 
particle is not refl ected, it must be transmitted, so the probability it will be found to 
transmit  T  is 

    

2
1 2

2
1 2

2 2 2 2
1 1 2 1 1 1 2 1

2
1 2

1 2
2

1 2

0
2

0

1

1

2 2

4
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T R
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k k

k k k k k k k k

k k
k k

k k

E E V

E E V

  (11.48) 

 Let’s examine the limiting behavior. If   0E V   the particle shouldn’t even notice the 
barrier, and for all intents and purposes we have a constant potential. We thus expect 
  0R   and   1T  , and this is exactly what we fi nd from eqs. (11.47) and (11.48) in this 
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limit. If   0E V   (but  E  is still greater than   0V  ) Eqs. (11.47) and (11.48) predict the oppo-
site behavior:   1R   and   0T  ; the particle is found to refl ect with almost 100% cer-
tainty. This is in stark contrast to the classical predictions. Classically   0R   and   1T   
if   0E V   (even by just a little bit); the particle will always be transmitted as long as it 
has enough energy to get over the barrier. 

 You might wonder why we used probability fl uxes in the above, and not simply 
  2 2

1 1/R B A   and   2 2
2 1/T A A  . Equation (11.47) shows that these defi nitions will 

work for  R , but in the problems you’ll show that they don’t work for  T . The reason they 
don’t work is that the particle speed is different on the two sides of the boundary. To get 
the correct answer in all cases, it’s necessary to use the probability fl ux. 

 Keep in mind that the wave function of the particle exists on both sides of the bar-
rier. Initially the particle doesn’t refl ect or transmit, it does  both . The particle is not 
localized on one side of the barrier or the other until after a measurement is performed 
that determines where it is.    

   11.3.3      E   <   V   0    

 Now consider the case where the energy of the incident particle is less than the step 
height, that is,   0E V  . To the left of the step (  0x  ) the solutions are still given by eqs. 
(11.31) and (11.32). However, eq. (11.34) becomes 

    
1/ 2 1/ 2

0 0
2 2 2

2 2m V E m V E
k i i  , (11.49)

where     is real and positive. The solution to the right of the barrier thus becomes 

    2 2 0x xx A e B e x . (11.50)  

 We must have   2 0B   in eq. (11.50), otherwise the wave function would diverge as 
 x  increases, and not be normalizable. Applying the boundary conditions that the wave 
function and its derivative must be continuous at   0x   yields 

    1 1 2A B A   (11.51) 

    1 1 1 1 2ik A ik B A  . (11.52)

A little algebra reveals that that the wave amplitudes determined by these equations are 

    1
1 1

1

ik
B A

ik
, 1

2 1
1

2ik
A A

ik
  . (11.53)

The refl ection probability is 
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1
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1 1 1

2
11 1

,
1

,

B
x
A
x

k Bj x t ik
R

ikj x t k A
 , (11.54)

so clearly the transmission probability is   0T  . 
 If the energy of the particle is less than the potential energy of the step, it refl ects 

with 100% certainty, a result that agrees with the classical prediction. The particle 
refl ects, even though its wave function extends into the classically forbidden region. 
The simple traveling wave model we’re using here doesn’t show the motion of a local-
ized particle. If we were to do a full calculation, with a moving localized particle, we 
would see that the wave function of the particle extends beyond the barrier when the 
particle is close to the barrier. However, as the particle refl ects and moves away, the 
wave function inside the barrier decays away. To observe this time-dependent behavior 
for yourself, see the Java applet in ref. [11.2].     

   11.4    TUNNELING   

 What happens if the potential barrier has a fi nite width? Consider a potential barrier of 
height   0V   and width  L , as shown in  fi g.  11.2  . The solution to the Schrödinger equation 
for a barrier such as this is most interesting when the particle energy is less than the 
barrier height (  0E V  ). In this case the solution is 

    
1 1

2 2

3

0
0

ikx ikx

x x

ikx

A e B e x
x A e B e x L

x LA e

 , (11.55)
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  Fig 11.2     A potential barrier with a fi nite width.   
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with 

    
1/ 2

2
2mEk  , (11.56)

and 

    
1/ 2

0
2

2m V E
 . (11.57)

In eq. (11.55) we’ve assumed that the particle is incident on the barrier from the left, 
and there is no leftward traveling wave on the right of the barrier.    

 By applying boundary conditions at   0x   and   x L  , it is possible to determine the 
four wave amplitudes   1B  ,   2A  ,   2B  , and   3A  , in terms of the amplitude of the incident wave   1A  . 
From this one can calculate the probability that the particle will be found to the right of 
the barrier (see problem 11.8). Such a particle is said to “tunnel,” because it does not have 
enough energy to get over the barrier, yet somehow it manages to appear on the other side. 

 A qualitative solution is easy to obtain in the limit that the barrier is very wide 
(  1L  ). In this case the particle will be refl ected with near 100% probability, so 
  1 1B A  . The growing exponential term inside of the barrier must be small, and we’ll 
make the approximation that it is 0 (  2 0B  ). At the left side of the barrier we then have 
  2 1A A   and at the right side of the barrier we have   3 2 1

L LA A e A e  . The 
transmission probability is then 

    
3

1

2
3 2

2
1

,
,

A
x L
A
x

Aj x t
T e

j x t A
 . (11.58)

The tunneling probability decreases exponentially with the width of the barrier, in the 
limit of a wide barrier. 

 There are some other interesting aspects to tunneling. Inside the barrier   0E V  , and 
eq. (11.49) tells us that the wave vector is purely imaginary, which means that the 
momentum of the particle is purely imaginary. This implies that the particle does not 
“propagate” through the barrier in any traditional sense. The amount of time it takes for 
the particle to travel through the barrier is an interesting, and diffi cult, question. There 
is some experimental evidence that particles can propagate through the barrier in times 
that would suggest that they are propagating at superluminal speeds (faster than  c ) in 
the barrier [11.3]. However, this does not violate special relativity because no useful 
information is transmitted—the probability of any particle getting through the barrier 
is very small, so no information propagates faster than  c . 

 Tunneling and superluminal velocities are not limited to quantum mechanics, as 
classical waves can display similar behavior. If a classical electromagnetic wave propa-
gating in a medium with index of refraction   1n   (e.g., glass) is incident on a boundary 
with a medium of index of refraction   2n   (e.g., air) at a large angle, and   1 2n n  , the light 
can experience total internal refl ection: 100% of the light refl ects into the glass, and the 
air represents a barrier that the light cannot propagate into. However, there is an electric 



11:  WAVE MECHANICS AND THE SCHRÖDINGER EQUATION  •   255 

fi eld, known as the evanescent fi eld, which extends into the air, but decays exponen-
tially away from the boundary. If a second block of glass is brought very close to the 
boundary, so that some of the evanescent fi eld extends into it, the fi eld can “jump” the 
air gap, and continue propagating in the second block of glass. This effect is known as 
frustrated total internal refl ection. 

 Superluminal propagation also occurs with classical waves. Indeed, it is possible for 
the transit time to be negative—the peak of the signal comes out before it goes in. For 
a simple experiment demonstrating this effect using electrical circuits, see ref. [11.4].   

   11.4.1    Microscopes and Memory   

 There are some important practical uses of tunneling. In a scanning tunneling micro-
scope (STM) an extremely fi ne conducting tip, with ideally only a single atom at its 
point, is brought close (<1 nm) to a conducting surface. A bias voltage is applied 
 between the surface and the tip, and electrons can tunnel across the gap between them. 
The tip is scanned across the surface and the tunneling current is measured. Since the 
probability of tunneling (and hence the tunneling current) is extremely sensitive to the 
distance between the tip and the surface, a profi le of the surface can be obtained. It is 
possible to achieve atomic-scale resolution of the surface with an STM. 

 The fl ash memory in your portable music player or digital camera uses tunneling in its 
erasure process. One bit of fl ash memory is depicted schematically in  fi g.  11.3  ; it’s simi-
lar to a metal-oxide-semiconductor fi eld-effect-transistor (MOSFET), only the fl oating 
gate (FG) is absent in a standard MOSFET. In a MOSFET the oxide behaves as an insula-
tor, and applying a positive voltage to the control gate (CG) creates an electric fi eld in the 
channel between the source and the drain, which allows electrons to fl ow between them.   5       

  

Vs

Vg

Vd

DS

CG
FG

Oxide

    

  Fig 11.3     One bit of fl ash memory. Here S denotes the source, D denotes the drain, CG denotes 
the control gate, and FG denotes the fl oating gate. The source, control gate, and drain volt-
ages are   V  s   ‚   V g    and   V d    ‚ respectively.   

    5.     Semiconductor physics is beyond the scope of this book, but a brief explanation is as follows. Electric 
fi elds (due to charged impurity atoms) within the channel region between the source and drain ordinarily 
impede the fl ow of both electrons and holes. (A hole is essentially the lack of an electron, and behaves as a 
mobile positive charge carrier.) Applying a positive voltage to the control gate drives holes out of the chan-
nel, while pulling electrons in. This increases the conductivity of the channel, and allows an electron current 
to fl ow between the source and drain. 
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 Assume that there is no charge on the FG, which corresponds to a memory state of 
binary 1. In this case the memory cell acts as an ordinary MOSFET, and electrons will 
fl ow from the source to the drain with the application of a positive voltage (~5V) to the 
CG. The state of the memory is thus read by applying 5V to the CG; if electrons fl ow 
from the source to the drain the memory state is 1. 

 Binary 0 is written by applying an elevated positive voltage (~12V) to the CG, 
which creates a higher electron current between the source and the drain. Some of these 
electrons have high enough kinetic energy to cross the oxide barrier, and collect on the 
FG. This process is known as hot-electron injection. If power is removed, electrons 
stay on the FG because it is surrounded by the insulating oxide, so the memory state is 
maintained even in the absence of power (the memory is nonvolatile). This state cor-
responds to binary 0 because the electrons on the fl oating gate shield the voltage 
applied to the CG; if 5V is applied to the CG, electrons will not fl ow between the 
source and drain. 

 The memory state is changed from 0 back to 1 (erased) by applying a large negative 
voltage to the CG. This creates an electric fi eld that allows the electrons on the FG to 
tunnel through the oxide layer to the source. With the electrons now removed from the 
FG, the memory state is back at 1.     

   11.5    INFINITE SQUARE WELL   

 One of the features that makes quantum mechanics different from classical mechanics 
is the fact that quantum systems have discrete energy levels in situations where classi-
cal systems would allow a continuum of energies. So far in this chapter, however, the 
systems we have examined do not have quantized energies. Why is that? It’s because 
particles typically have quantized energies when they are confi ned, and the particles 
we’ve examined so far have been free. In this section we’ll study the behavior of a 
particle in a confi ning potential—an infi nite square well. 

 An infi nite square well potential is given by 

    
0 0 x L

V x
elsewhere

 , (11.59)

and is depicted in  fi g.  11.4  . Clearly this is an idealized situation, but our results will 
closely approximate the physical solutions for a particle whose energy is much less than 
the potential energy outside the well. The particle must be confi ned to the inside of the 
well, because a particle with fi nite energy cannot be located where the potential energy 
is infi nite. Thus, the wave function must be 0 outside of the well. Inside the well the 
potential energy is 0, so the solution to the time-independent Schrödinger equation of 
eq. (11.19) will once again be a linear combination of right-traveling and left-traveling 
waves. The solution is thus 

    0
0

ikx ikxAe Be x Lx
elsewhere

 , (11.60)
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where 

    
1/ 2

2
2mEk  , (11.61)

and we again take the positive square root.    
 The boundary conditions require the wave function to be continuous at the edges of 

the well.   6    At   0x   this means 

    0 ,
,

A B
B A

  (11.62)

and inside the well the wave function is 

    sinikx ikxx A e e C kx  , (11.63)

with   2C iA . The boundary condition at   x L   tells us that 

    sin 0C kL  . (11.64)

To satisfy this equation we can’t choose   0C  , because that would mean   0x   
throughout all space, and the particle would not be anywhere. The only other possibil-
ity is that the sine is 0, which occurs when 

    1,2,3, . . .kL n n   . (11.65)

Here the value   0n   is excluded, because it would also mean   0x   throughout all 
space. Since  L  is determined by the width of the well, eq. (11.65) determines the al-
lowed values of the wave vector, and these values depend on  n . With this in mind, we’ll 
rewrite eq. (11.65) as 

  

V (x)

xL0
0

    

  Fig 11.4     An infi nite square well potential.   

    6.     Since there is an infi nite discontinuity at the edges of the well, the derivative of the wave function need 
 not  be continuous at these points.  
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    1, 2,3, . . .n
nk n
L

   , (11.66)

where the subscript distinguishes the different allowed wave vectors. 
 The wave vector and the energy are related by eq. (11.61), and we can use this equa-

tion to express the allowed energies as 

    
2 2 2 2 2

22 2
n

n
k nE

m mL
 1, 2,3, . . .n    . (11.67)

Note that the lowest energy   1E  , called the ground-state energy, is  not  0. Why is that? 
An energy of 0 would imply a momentum of 0, with no uncertainty. The   Heisenberg 
indeterminacy relation would then require the particle to be completely unlocalized 
(infi nite uncertainty in position), which we know cannot be true because the particle 
must be in the well. In problem 11.11 you’ll examine what the indeterminacy relation 
implies about the ground-state energy. 

 We can use eq. (11.66) to rewrite the wave functions inside the well as 

    sin sinn n n n
nx C k x C x
L

 . (11.68)

We want our wave functions to be normalized, so the coeffi cients   nC   are determined by 
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  (11.69)

and   2 /nC L  . Thus, we obtain as the wave functions for a particle in an infi nite 
square well 

    
2 sin 0

0
n

n x x L
x L L

elsewhere
 1, 2,3, . . .n   . (11.70)

The fi rst three of these wave functions and their square magnitudes (corresponding 
probability densities) are shown in  fi g.  11.5  .    

 The states   n   are the eigenstates of the Hamiltonian, which is a Hermitian ope-
rator, so they must form a complete, orthonormal, basis set. Likewise, the functions 
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  n x   form a complete orthonormal set, so any allowable wave function for the infi -
nite square well can be written as a linear combination of   n x  ’s. 

 Let’s do an example to see how these results are useful. 

 EXAMPLE 11.1 
 At   0t   a particle in a potential well described by eq. (11.59) is known to be localized 
in the left half of the well. Determine (a)   ,x t  , and (b) the probability that a meas-
urement of the energy at time  t  will yield the value   nE  . 

 (a) First we need to determine   ,0x  . We’ll assume that the particle is equally 
likely to be anywhere in the left half of the well, so its properly normalized wave 
function is 

    
2 0 / 2,0
0

x Lx L
elsewhere

 , (11.71)

which is depicted in  fi g.  11.6  . Note that this is technically an illegal wave function, 
as it has discontinuities at   0x   and   / 2x L  ; we could smooth it out, but the results 
obtained here would not be substantially different.    

  x L0 x L0

(a) (b)

( )ψ3 x

( )ψ2 x

( )ψ1 x ( )ψ 2
1 x

( )ψ 2
2 x

( )ψ 2
3 x

    

  Fig 11.5     (a) The wave functions corresponding to the lowest three energies of an infi nite 
square well potential. (b) The squares of these wave functions, which correspond to the prob-
ability density of fi nding a particle at a particular position in the well.   
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 To fi nd   ,x t   we’ll use the prescription described in sec. 11.1.4. We’ve already 
accomplished step (1), which is to fi nd the allowed energies and their corresponding 
wave functions   n x  . Step (2) tells us to use eq. (11.15) to fi nd the coeffi cients   nc   in 
the linear expansion of   ,0x  :

   

/ 2

0
/ 2

0

,0

2 sin

2 cos

2 cos 1 .
2

n n

L

x L

x

c dx x x

n xdx
L L

n x
n L

n
n

  (11.72)

This can be rewritten as 

    

2 odd

4 2,6,10, . . .

0 4,8,12, . . .

n

n
n

c n
n

n

  . (11.73) 

 Finally, step (3) is to determine   ,x t   using eq. (11.17). Remembering that 
  /n nE  , and using the energies in eq. (11.67), yields 

  

V (x)

xL

( )Ψ x,0

0
0     

  Fig 11.6     The wave function of a particle localized to the left half of an infi nite square well 
potential.   
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  (11.74) 

 (b) The probability of measuring   nE   at time  t  is   
2

,n nP E t t  . Using eq. 
(11.16) we can write the inner product as 

    

.

i tm
n m n m

m
i tm

m nm
m

i tn
n

t c e

c e

c e

  

The probability we seek is then 

    

2

2
2

4 odd

16, 2,6,10, . . .

0 4,8,12, . . .

n n

n
n

P E t c n
n

n

  . (11.75)

These probabilities are independent of time.    

   11.5.1    Time Evolution   

 Clearly the time evolution of the wave function described in eq. (11.74) is quite compli-
cated, and is best calculated using a computer. You can visualize the time evolution of 
quantum states in an infi nite square well potential (and other potentials) using the Java 
applets of refs. [11.5] and [11.6]. 

 In example 11.1 we found that the probability of measuring any particular energy 
did not change with time, which means that the expectation value of the energy is 
time- independent as well. This is consistent with our discussion in sec. 9.3, and with 
 conservation of energy. 

 Let’s assume that we perform a measurement of the energy of the particle in 
example 11.1 and obtain   1E  . What happens then? Postulate III(b) in sec. 5.2 tells us 
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that the system is left in the eigenstate   1   [wave function   1 x  ] corresponding to 
  1E  . Since   1   is an eigenstate of the Hamiltonian, the particle will remain in this 
state (as discussed in sec. 9.2). Future measurements of the energy with a particle in 
this state will yield   1E   with 100% probability. 

 A measurement of the position of the particle will change the state of the system. 
However, after a position measurement, the state of the particle is  not  a position eigen-
state. This is because position eigenstates are defi ned with infi nite precision, whereas 
real measurements have only a fi nite precision. The state of a particle after a position 
measurement is described by a wave packet. For example, an idealized measurement 
which fi nds the particle to be in the left-hand side of a well leaves us with the situation 
in example 11.1, with the state of the particle approximately described by eq. (11.71). 
A more realistic position measurement would most likely leave the particle in a state 
approximated by the Gaussian wave packet of eq. (10.14); the width of the wave packet 
being determined by resolution of the measurement. To observe the results of various 
measurements performed on particles in different potentials, see the Java applets of 
refs. [11.2] and [11.6].    

   11.5.2    Classical Comparison   

 If you think the wave functions in  fi g.  11.5   look just like the modes of a vibrating string 
tied at both ends, you’re correct; the modes of a vibrating string are also described by 
eq. (11.68). Indeed, at   0t   the problems of fi nding the series expansions of the initial 
wave function   ,0x  , and the initial displacement of the string   ,0Y x  , are essen-
tially the same. 

 However, the time evolutions of the wave function and the vibrating string are 
different, because they have different dispersion relations. A dispersion relation is 
the relationship between     and  k . For a quantum particle in an infi nite square well the 
dispersion relation is 

    
2

2
n n

n
E k

m
 1, 2,3, . . .n   (infi nite well), (11.76)

while for the vibrating string it is 

    n nvk  1, 2,3, . . .n   (string), (11.77)

with   v  being the velocity of the wave on the string. The important difference that leads 
to different time evolutions is that for the classical wave   n nk  , while for the quantum 
wave   2

n nk  . 
 The time behavior of particles in other potentials is also dependent upon the corre-

sponding dispersion relation. For example, the dispersion relation for a quantum free 
particle causes it to propagate in a manner that is different from a classical free particle 
(see complement 11.A). 
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 While the detailed time evolution of a quantum particle can be quite different from its 
classical counterpart, the time evolution of expectation values (averages) for quantum 
and classical particles have some similarities. The temporal behavior of the expectation 
value of an observable in a time-independent Hamiltonian is given by eq. (9.19). Apply-
ing this equation to the position of a particle tells us that 

    

2

2

ˆ ˆ( ) , ( )

ˆ ˆ ˆ( ) , ( )
2

ˆ ˆ( ) , ( )
2
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d ix t H x t
dt

i pt V x x t
m

i t p x t
m
i t p p x p x p t
m

t p t
m

  (11.78)

where we have used eqs. (7.8) and (10.32). Rearranging, this becomes 

    dp m x
dt

 , (11.79)

which says that the expectation values of position and momentum obey the correspond-
ing classical equation. 

 In the problems you’ll show that 

    d dp V x F x
dt dx

 , (11.80)

where the force on the particle   F x   is defi ned in the usual way as the negative of the 
gradient of the potential energy. These equations may lead you to believe that expecta-
tion values in quantum mechanics always mimic classical results, but this is  not  true, 
because in general 

    d p F x F x
dt

 . (11.81)

Indeed, even if   F x F x   quantum particles can display nonclassical temporal 
evolution, as we’ll see in  chapter  12  . 

 Equations (11.79) and (11.80) are known as Ehrenfest’s theorem. This theorem is 
quite general, as we have not assumed anything about the potential, other than that it is 
time independent.    
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   11.5.3    Finite Well   

 As stated above, the infi nite potential well is an idealization, as a real well will have 
a fi nite potential energy   0V   on the outside ( fi g.  11.7  ). Particles with   0E V   have free-
particle solutions of the form in eq. (11.27), and can have any energy. Particles with 
  0E V   will be bound. On the inside of the well they have wave functions that oscil-
late, similar to those in  fi g.  11.5  , and the allowed energies are quantized. However, 
these wave functions will not be 0 outside the well, but decay exponentially away 
from the boundary, as was the case for the potential step with   0E V   in sec. 11.3.3. 
The difference between the well and the step is that the well has two sides, and we 
must apply boundary conditions at both. You can work out the details of this in 
problem 11.21.       

   11.5.4    Semiconductor Laser Diodes   

 While it may seem that the potential well is a theoretical curiosity with no real-world 
applications, that would be incorrect. Using modern fabrication techniques, such as mo-
lecular beam epitaxy (MBE) or metal-organic chemical vapor deposition (MOCVD), it 
is possible to create devices with dimensions that can be controlled on an atomic scale. 
When the size of such a device approaches the de Broglie wavelength of the particles, 
quantum size effects become important. In particular, one is not completely limited by 
the energy level structure of materials handed to us by nature; it is possible to engineer 
the energy level structure of a device by changing its size  L  [eq. (11.67)]. 

 For example, the majority of semiconductor laser diodes use a layered structure 
called a quantum well, to tune and improve their performance. A very thin (~10 nm) 
layer of a material (such as gallium-arsenide, GaAs) is sandwiched between two layers 
of another material (such as aluminum-gallium-arsenide, AlGaAs) that has different 
electronic properties. The detailed physics of what happens in the semiconductor mate-
rials is beyond our interests here; suffi ce it to say that electrons and holes are confi ned 
along one dimension in the GaAs layer, which behaves as a potential well. By altering 

  

V (x)

xL

V0

0
0

    

  Fig 11.7     Finite square well potential.   
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the thickness of this layer one can control the energy level structure, and hence the laser 
wavelength. In addition to wavelength tunability, quantum wells have other properties, 
such as higher laser gain, which improve device performance. 

 The 3-D analog of a 1-D quantum well is called a quantum dot, and is discussed in 
complement 13.A.       

   11.6  References  

    [11.1]  D.J. Griffi ths,  Introduction to Electrodynamics, 3rd ed . (Prentice Hall, Upper Saddle 
 River, New Jersey, 1999), p. 214. 

  [11.2]  The PhET Project,  Quantum Tunneling and Wave Packets ,  http://phet.colorado.edu/en/
simulation/quantum-tunneling . 

  [11.3]  A.M. Steinberg, P.G. Kwiat, and R.Y. Chiao, “Measurement of the single-photon tunneling 
time,” Phys. Rev. Lett.  71 . 708 (1993). 

  [11.4]  T. Nakanishi, K. Sugiyama, and M. Kitano, “Demonstration of negative group delays in a 
simple electronic circuit,” Am. J. Phys.  70 , 1117 (2002). 

  [11.5]  P. Falstad,  1-D Quantum States Applet ,  http://www.falstad.com/qm1d/ ; The PhET Project, 
 Quantum Bound States ,  http://phet.colorado.edu/en/simulation/bound-states . 

  [11.6]  M. Belloni and W. Christian,  QM Measurement Package ,  http://www.compadre.org/ 
Repository/document/ServeFile.cfm?ID=9773&DocID=1461.  

         11.7  PROBLEMS    

           11.1     Use separation of variables to split the partial differential equation of eq. (11.8) 
into two ordinary differential equations. The steps for doing this are: 

   (i) Substitute   ,n n nx t x t   into eq. (11.8). 
   (ii)  Divide the resulting equation by   n nx t  , and separate the temporal 

and spatial dependencies on opposite sides of the = sign. 
   (iii)  Note that time changes cannot affect the spatial part of the equation, and 

vice versa. The only way for the temporal and spatial parts to be equal to 
each other is if they are both constants. Set both the temporal and spatial 
parts equal to the same constant,   nE  , yielding two equations. 

   (iv) Rearrange the spatial equation to obtain eq. (11.19). 
   (v) Solve the temporal equation. Compare your solution to eq. (11.20).  
      11.2*     Verify eq. (11.44).  
      11.3*     (a) Verify eq. (11.48) by using the appropriate ratio of probability fl uxes.
  (b) Show that   2 2

2 1/T A A   does  not  give the correct solution.  
      11.4*     Verify eq. (11.53).  
      11.5     For a particle incident on a potential step with   0E V  , show that   0T   using the 

appropriate ratio of probability fl uxes.  
      11.6     For a particle incident on a potential step with   0E V  , show that the magnitudes 

of the amplitudes of the incident and refl ected waves functions are the same. 
Find the phase shift that the wave function acquires on refl ection.  

http://www.falstad.com/qm1d/
http://phet.colorado.edu/en/simulation/bound-states
http://www.compadre.org/Repository/document/ServeFile.cfm?ID=9773&DocID=1461
http://www.compadre.org/Repository/document/ServeFile.cfm?ID=9773&DocID=1461
http://phet.colorado.edu/en/simulation/quantum-tunneling
http://phet.colorado.edu/en/simulation/quantum-tunneling
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      11.7*     A particle experiences the potential shown in  fi g.  11.1  (a). It has   0E V  , is to the 
right of the origin (  0x  ), and is moving to the left. In other words, it doesn’t 
strike a potential barrier, but falls off a potential cliff. Calculate the probabilities 
that the particle will be found to be refl ected or transmitted by the cliff.  

      11.8     A particle is incident from the left on the potential barrier shown in  fi g.  11.2   
with   0E V  . (a) Solve the Schrödinger equation, with appropriate boundary 
conditions, to fi nd the spatial wave function throughout all of space. (b) Show 
that the probability  T  of measuring the particle to tunnel through the barrier is 

    
12

20

0
1 sinh

4
V

T L
E V E

 . (11.82)  

      11.9     Take the limit that   1L   in eq. (11.82), verifying that   2 LT e   in this limit.  
      11.10     Show that the wave functions   n x   of the infi nite square well are orthogonal.  
      11.11*     Use the Heisenberg indeterminacy relation to estimate the ground state energy 

of a particle in an infi nite square well potential.  
      11.12*     Determine whether or not the wave functions   n x   of the infi nite square well 

satisfy the Heisenberg indeterminacy relation.  
      11.13     At   0t   a particle in an infi nite square well potential [eq. (11.59)] is in a state 

described by the wave function 

    
2 2 4 3sin sin 0

,0 3 3
0

x i x x L
x L L L L

elsewhere
 . (11.83) 

   Determine (a) the probability   ,nP E t   that a measurement of the energy will 
yield the value   nE  , (b)   E t  , (c)   x t  , (d)   p t  .  

      11.14     At   0t   a particle in an infi nite square well potential [eq. (11.59)] is in a state 
that is well approximated by the wave function 

    
2 2sin 0 / 2

,0
0

x x L
x LL

elsewhere
 , (11.84) 

   which is depicted in  fi g.  11.8   (technically this is an illegal wave function, as 
the derivative is not continuous at   / 2x L  ). Determine (a)   ,x t  , (b) the 
probability   ,nP E t   that a measurement of the energy at time  t  will yield the 
value   nE  .     

      11.15     At   0t   a particle in an infi nite square well potential [eq. (11.59)] is in a state 
described by the wave function  
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   5
30 0

,0
0

x L x x L
x L

elsewhere
 , (11.85) 

   which is depicted in  fi g.  11.9  . Determine
  (a)   ,x t  , (b) the probability   ,nP E t   that a measurement of the energy at 

time  t  will yield the value   nE  , (c)   E t  .     

      11.16     For the particle in problem 11.15, calculate   x t  .  

      11.17     For the particle in problem 11.15, calculate   p t  . (Hint: This is straight-
forward if you use the results of problem 11.16.)  

      11.18     At   0t   a particle in an infi nite square well potential [eq. (11.59)] is in a state 
that is well approximated by the wave function 

  

V (x)

xL

( )Ψ x,0

0
0

    

  Fig 11.8     The wave function of eq. (11.84).   

  

V (x)

xL

( )Ψ x,0

    

  Fig 11.9     The wave function of eq. (11.85).   
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3

3

12 0 / 2

12,0 / 2

0

x x L
L

x L x L x L
L

elsewhere

 , (11.86) 

   which is depicted in  fi g.  11.10   (technically this is an illegal wave function, as 
the derivative is not continuous at   / 2x L  ). Determine (a)   ,x t  , (b)   E t .      

      11.19     Verify eq. (11.80). [Hint: Eq. (10.72) may be useful.]  
      11.20*     When can we say that   F x F x  , so that quantum mechanical expecta-

tion values behave as their classical counterparts? (Hint: use a power series.)  

      11.21     For a particle in the fi nite square well potential of  fi g.  11.7  , show that if   0E V   
the allowed energies are given by the solutions to the equation  

   
2 2

2tan kkL
k

 , (11.87) 

   where  

   
1/ 2

2
2mEk , 

1/ 2
0
2

2m V E
 . (11.88)       
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  Fig 11.10     The wave function of eq. (11.86).   



        COMPLEMENT 11.A      

  Free Particle Propagation   

 In sec. 11.2 we discussed the solutions to the Schrödinger equation for a free particle 
in a constant potential. The solutions we obtained there [eq. (11.24)], however, are not 
localized, and hence are unphysical. Here we’ll consider localized, wave-packet solu-
tions to the constant potential Schrödinger equation [eq. (11.22)]. We’ll assume that 
  0 0V  , because a constant shift in the potential energy has no physical signifi cance 
anyway.   

   11.A.1    The Initial Wave Packet   

 We know from our discussions in  chapter  10   that localized particles must have a spread 
of momenta. Since   /k p  , a spread of momenta means a spread of wave vectors. We 
know that the constant potential Schrödinger equation allows solutions consisting of a 
spread of wave vectors, because the solutions that we found in eq. (11.24) were valid 
for any value of  k . Furthermore, the Schrödinger equation is linear, so any superposi-
tion of solutions with different  k ’s is also a solution. 

 The shape of the wave packet at   0t  ,   ,0x  , is determined by the initial condi-
tions. Let’s assume that initially our free particle is described by a wave packet that is 
a Gaussian centered about the origin, so 

    0
2 2 // 4

1/ 2
1,0

2

ip xxx e e  , (11.A.1) 

 where     and   0p   are constants. The parameter     determines the initial width of the wave 
packet, and   0p   is the momentum of the particle (see the problems). In sec. 10.3 we 
described how to represent position-basis wave functions in terms of momentum-basis 
wave functions. We can use eq. (10.58) to write our initial wave function as 

    /1,0
2

ipxx dp e p  . (11.A.2)
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We can think of this as a superposition of momentum-state wave functions   /ipxe  , 
where amplitude of each of the wave functions is given by   p  . Equation (11.A.2) 
says that   ,0x   is the inverse Fourier transform of   p  . However, we know   ,0x  , 
and we want to fi nd   p  , so we use the Fourier transform relationship of eq. (10.57), 
which tells us that 

    /1 ,0
2

ipxp dx e x  . (11.A.3)

Substituting in our expression for   ,0x  , eq. (11.A.1), we see that 
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e

  (11.A.4)    

   11.A.2    Propagation   

 In the case of a discrete spectrum of energies,   nE  , the time evolution of the wave 
function is described by eq. (11.17). However, for a free particle we have a continuous 
energy spectrum, so we need to use an integral instead of a sum. Rather than trying to 
turn the sum of eq. (11.17) into an integral, the solution will be more transparent if we 
go back and look at the time dependence of the state vector. 

 The momentum states   p   are eigenstates of the free-particle Hamiltonian, which is 

    
2ˆˆ

2
pH
m

 . (11.A.5)

Thus, we can use them to write the time-dependent state as 
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2ˆ / 2

2 / 2
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  (11.A.6)
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where we have used eq. (10.49).   p   is the momentum representation of the state at 
  0t   [eq. (11.A.4)]. The time-dependent wave function can then be written as 

    
2 / 2

2/ / 2

,

1 ,
2

ip t m

ipx ip t m

x t x t

dp x p e p

dp e e p

  (11.A.7)

where we’ve used eq. (10.56). 
 We can make eq. (11.A.7) look a little nicer if we recognize that the angular fre-

quency of a free particle can be written as 

    
2 2 2

2 2
E k p

m m
 , (11.A.8) 

 where we’ve used eqs. (11.26) (with   0 0V  ). Substituting this into eq. (11.A.7) gives 

    /1,
2

ipx i tx t dp e e p  . (11.A.9)

Note, however, that we can’t pull the factor of   i te   outside of the integral, because     
is a function of  p . Equation (11.A.9) is the continuous variable analog of eq. (11.17). 

 We can substitute eq. (11.A.4) into eq. (11.A.7), to obtain 
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1/ 4 2 2 22 // / 2

2 2 2 21/ 4 1/ 2
0 0

2

1 2,
2

2 42 2 exp ,
2 2

p pipx ip t mx t dp e e e
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  (11.A.10)

where exp[ ] is the exponential function. Equation (11.A.10) can’t be written much 
more simply, but we can write the magnitude of   ,x t   as 

    

21/ 41/ 4 2 2
02

2 2 2 2
2

2 2

2, 4 exp
4

x v ttx t
m t

m

 , (11.A.11)

where   0 0 /v p m  is the particle velocity. 
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 Plots of the time evolution of an electron wave packet, described by eq. (11.A.10), 
are shown in fi g. 11.A.1. The solid black line represents the magnitude of the wave 
function, and it can be seen moving to the right because of its initial momentum. That 
the wave packet moves with velocity   0v   can be seen by calculating the expectation 
value of the position, which for the wave function of eq. (11.A.10) yields   0x v t .    

 The particle velocity is the velocity with which   ,x t   moves. This velocity is 
known as the group velocity of the wave   gv  , which is given by   /gv d dk  . In the prob-
lems you’ll show that   0gv v  , as we would expect. 

 However, note in fi g. 11.A.1 that the envelope of the wave function,   ,x t  , and 
the oscillations underneath it do not propagate at the same speed. The arrow indicating 
one of the oscillation peaks is clearly moving slower than the peak of the envelope. The 
oscillations propagate at the phase velocity   /pv k  , which you’ll fi nd in the prob-
lems is   0 / 2pv v  . The phase velocity is half of the particle velocity for a quantum 
mechanical free particle. 
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  Fig 11.A.1     An electron wave packet described by eq. (11.A.10), with   =  ,2 nm     1 ,= nm   and 
  0 / ,p h=   is plotted at different times. The magnitude of the wave function   ( , )x t   is plotted 
in black, while the real part   x tRe ( , )   is plotted in gray. The arrow follows the peak of one 
of the oscillations of   x tRe ( , )  .   
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 Longer-term evolution of the wave packet is shown in fi g. 11.A.2. It can be seen that 
the wave packet spreads as it propagates. Additionally, the wave packet becomes 
“chirped”, which means that the wavelengths (frequencies) contained in the pulse 
spread out. Notice that at   60 fst   the leading edge of the packet contains shorter wave-
lengths, and the back edge of the packet contains longer wavelengths. This is because 
the shorter wavelengths correspond to larger momenta, which move faster. The term 
“chirp” comes from the fact that if you listen to a sound whose frequency varies in time, 
it sounds like a chirp.    

 The wave packet in fi g. 11.A.2 spreads rapidly because it is very narrow to start 
with. A wave packet that is many wavelengths wide at   0t   would still spread, but not 
nearly as rapidly. To create your own wave packets, and see how they propagate in 
time, see the Java applet at ref. [11.A.1].         
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  Fig 11.A.2     An electron wave packet with the same parameters as fi g. 11.A.1 is plotted at dif-
ferent times. The magnitude of the wave function   x t( , )   is plotted in black, while the real 
part   x tRe ( , )   is plotted in gray.   
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   11.A.3  References  

    [11.A.1]  The PhET Project,  Quantum Tunneling and Wave Packets ,  http://phet.colorado.edu/en/
simulation/quantum-tunneling.  

         11.A.4  PROBLEMS    

           11.A.1*      Show that the wave function in eq. (11.A.1) has   0p p  . Do this by express-
ing   ̂p  in the position basis.  

      11.A.2        Show that the wave function in eq. (11.A.4) has   0p p  . Do this by express-
ing   ̂p  in the momentum basis.  

      11.A.3*     Show that for a free particle in a constant potential,   0gv v   and 0 / 2pv v    .                         

http://phet.colorado.edu/en/simulation/quantum-tunneling
http://phet.colorado.edu/en/simulation/quantum-tunneling


         CHAPTER 12 

The Harmonic Oscillator  

    In the previous chapter we discussed several systems where potential energy de-
pends on position. Another system with a position-dependent potential is the har-
monic oscillator, and we’ll discuss it here. We’ll describe the properties of the 
quantum harmonic oscillator, and look at the similarities and differences between it 
and its classical counterpart.    

   12.1    WHY STUDY THE HARMONIC OSCILLATOR?   

 Think about a particle placed in the arbitrary one-dimensional potential shown in fi g 
12.1. Can we say anything general about the behavior of this particle? Let’s assume that 
we “cool” the particle, to lower its energy. The particle will then seek the location of the 
potential minimum, which in fi g 12.1 is at   0x x  . We can expand the potential energy 
in a Taylor series about this point as

   2
0 0 0 0 0

1 ...
2

V x V x V x x x V x x x   . (12.1) 

 The fi rst term in eq. (12.1) is constant, and subtracting it merely shifts the minimum 
of the potential to 0, with no effect on the behavior of the particle. The second term in 
eq. (12.1) is 0, because we are expanding about the minimum of the potential. Given 
these facts, the expansion of the potential energy function becomes

   2
0

1 ...
2

V x x x   , (12.2)

where   0V x  . The lowest order term in the expansion is quadratic in displace-
ment, and is shown in  fi g.  12.1  . Since a simple harmonic oscillator also has a potential 
energy that is quadratic, a particle in this potential will behave similarly to a harmonic 
oscillator; it will oscillate about the location of the minimum potential energy. As long 
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as the amplitude of the oscillations is not large, the behavior of the particle will be 
well approximated by that of a simple harmonic oscillator, with an effective “spring 
constant” of    .   1       

   12.2    CREATION, ANNIHILATION, AND NUMBER OPERATORS   

 The potential energy of a harmonic oscillator whose equilibrium position is at   0x   
can be written as
   2 21

2
V x m x  , (12.3)

where  m  is the mass, and   / m   is the resonance angular frequency. With this 
 potential energy, the Hamiltonian of the system is

   
2

2 2 2 2 2
2

ˆ 1 1 1ˆ ˆ ˆ ˆ
2 2 2
p

H m x m x p
m m

  . (12.4)

Given this Hamiltonian, one can follow the procedure described in chap. 11 to fi nd 
the allowed energies and corresponding wave functions. That is, write down the time-
independent Schrödinger wave equation, and solve it. We’ll use that approach in com-
plement 12.A, but here we’ll use an algebraic approach instead. 

 We used an algebraic approach to fi nd the eigenvalues and eigenstates when dis-
cussing angular momentum in chap. 7. Where we defi ned the raising   ̂J  and lowering 
  ̂J  operators as [eq. (7.19)]
   ̂ ˆ ˆ

x yJ J iJ   . (12.5)

  

V(x)

x
x
0     

  Fig 12.1     An arbitrary one-dimensional potential energy is plotted as a solid line. A second-
order Taylor-series approximation to the potential at   x x0  is plotted as a dashed line.   

   1.     We’re using     instead of  k  for the spring constant, so as not to confuse it with the wave vector. 
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When applied to angular momentum states,   ̂J   (   ̂J  ) increases (decreases) by 1 the 
quantum number corresponding to the  z -component of angular momentum. In comple-
ment 7.B these operators played a crucial role in determining the eigenvalues and 
eigenstates of angular momentum. We’ll now see that the harmonic oscillator has anal-
ogous operators, which allow us to determine its eigenvalues and eigenstates, without 
solving any differential equations. 

 Consider the operator   ̂a , which is defi ned as

   ̂ ˆ ˆ
2
m ia x p

m
  . (12.6)

The constant factor in front of the parentheses is chosen to make   ̂a  dimensionless. The 
operator   ̂a  is referred to as the annihilation operator, for reasons that will become obvi-
ous soon. This operator is not Hermitian; its adjoint is given by

   †ˆ ˆ ˆ
2
m ia x p

m
  , (12.7)

and  †â    is called the creation operator. We can also defi ne the dimensionless number 
operator n̂   as
   †ˆ ˆ ˆn a a  . (12.8)

Using eqs. (12.6) and (12.7), this becomes

   

2 2
2

2
2 2

ˆ ˆ ˆ ˆ ˆ
2

1ˆ ˆ ˆˆ ˆ ˆ
2

ˆ1 1 ˆ ˆ ˆ,
2 2 2

1 1ˆ ,
2

m i in x p x p
m m

m ix p xp px
mm

p im x x p
m

H

  (12.9)

which can be rearranged to express the Hamiltonian as

   †1 1ˆ ˆ ˆ ˆ
2 2

H n a a   . (12.10)

Because   Ĥ  is Hermitian, it is straightforward to see that   n̂  is as well. 
 As was the case for angular momentum, commutation relations play an important 

role in determining the eigenvalues and eigenstates of the harmonic oscillator. The fi rst 
commutator we are interested in is that for   ̂a  and   †â  , which you’ll show in the problems 
to be

   †ˆ ˆ, 1a a   . (12.11)
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The commutator of   n̂  and   ̂a  is

   

†

† †

ˆ ˆ ˆ ˆ ˆ, ,

ˆ ˆ ˆ ˆ ˆ ˆ, ,

ˆ,

n a a a a

a a a a a a

a

  (12.12)

where we’ve used eq. (7.8). This means

   ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ,
ˆ ˆ ˆ ˆ ˆ,

n a na an a

na an a
  (12.13)

which we’ll fi nd useful below. Similarly, you can show that

   † †ˆ ˆ ˆ,n a a  . (12.14)    

   12.2.1    Eigenvalues and Eigenstates   

 The eigenvalues and eigenstates of the number operator   n̂  are  n  and   n  , respectively:

   n̂ n n n  . (12.15)

Since   n̂  is Hermitian, its eigenvalues must be real. By examining eq. (12.10), we see 
that the states n    are also eigenstates of the Hamiltonian, 

    

1ˆ ˆ ,
2
1 .
2n

H n n n

E n n n

  (12.16)

The states   n   form an orthonormal basis that we can use to express any other state of 
the harmonic oscillator. I’ll foreshadow the allowed values of  n  by telling you that the 
states   n   are called the number states, or the Fock states. 

 We begin our search for the eigenvalues and eigenstates of   n̂  by realizing that the 
form of the Hamiltonian in eq. (12.4) indicates that the energies of the harmonic oscil-
lator must be positive. From eq. (12.16) we then know that

   

1 0,
2
1 ,
2

n

n

  (12.17)

and there is a lower bound on  n,    minn  . 
 If we apply the annihilation operator   ̂a  to a state   n  , we will in general obtain a new 

state    :

   ̂a n  . (12.18)
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Applying   n̂  to this, and using eq. (12.13), yields, 

    

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ

ˆ1

1 ,

n na n

an a n

an a n

n a n

n

  (12.19)

which means that the state     is an eigenstate of   n̂ , with eigenvalue   1n  . Using this 
in eq. (12.18) yields
   ̂ 1a n c n   , (12.20)

where the constant   c   needs to be determined. The operator   ̂a  lowers the value of  n  by 
1, so we can see now why it’s called the annihilation operator. Similarly, you’ll show in 
the problems that the creation operator increases the value of  n  by 1:

   †ˆ 1a n c n   . (12.21)

Thus, the operation of the creation and annihilation operators on harmonic oscillator 
states is similar to the operation of the raising and lowering operators on angular mo-
mentum states. 

 If we apply the annihilation operator to   minn  , we can’t lower  n  anymore (it’s at its 
minimum). For consistency, we must then have

   minˆ 0a n   . (12.22)

We can show that   min 0n   by interrogating   minn   with   n̂ :

   

min min min
†

min min min
†

min min

min

ˆ ,

ˆ ˆ ,

ˆ 0 ,
0 .

n n n n

a a n n n

a n n
n

  (12.23) 

 Knowing the minimum value of  n , we can use the creation operator to generate the 
states with other allowed values. Starting from   0n  , eq. (12.21) tells us that the 
allowed values of  n  are the positive integers, which is why we refer to   n̂  as the number 
operator. Using this information in eq (12.16), we fi nd that the allowed energies (eigen-
values of the Hamiltonian) for the harmonic oscillator are

  1 0,1, 2,...
2nE n n    . (12.24) 

 Note that the ground-state energy  0E   is not 0. The reason for this is same as it was 
for the infi nite well in sec. 11.5; a ground state energy of 0 is not allowed by the Heisenberg 
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indeterminacy relation. Also note that the energy levels of the harmonic oscillator are 
evenly spaced, with a separation of

   1n nE E E   . (12.25)    

   12.2.2    Expectation Values   

 In  chapter  11   we calculated expectation values such as   x   and   p   using integrals of 
wave functions. We can do this for the harmonic oscillator as well, however, for the 
harmonic oscillator we can also calculate these expectation values algebraically, with-
out resorting to integrals or wave functions. 

 To do this, we must fi rst determine the constants   c   and  c    in eqs. (12.20) and 
(12.21). Taking the adjoint of eq. (12.20), we fi nd

   †ˆ 1n a n c   . (12.26)

Now using eqs. (12.20) and (12.26), we fi nd

   
†

2

ˆ

ˆ ˆ

1 1

.

n n n n

n a a n

n c c n

c

  . (12.27)

Taking   c   to be real,   c n  , and eq. (12.20) becomes

   ̂ 1a n n n   . (12.28)

We can apply the same technique to fi nd the constant   c   in eq. (12.21), yielding

  †ˆ 1 1a n n n    . (12.29) 

 Next, we invert eqs. (12.6) and (12.7), to obtain the representations of   ̂x  and   ̂p  in 
terms of the creation and annihilation operators:

  † †1ˆ ˆ ˆ ˆ ˆ
2 2

x a a a a
m

   . (12.30) 

    † †ˆ ˆ ˆ ˆ ˆ
2 2

mp i a a a a
i

  . (12.31)

In these equations we have defi ned the quantity    , 

    m   , (12.32)

which has units of inverse length. We can use eqs. (12.30) and (12.31) to determine the 
operation of   ̂x  and   ̂p  on the number states. Since the number states form a basis, we 
can determine how   ̂x  and   ̂p  will operate on any harmonic oscillator state. Let’s look at 
an example of this. 
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 EXAMPLE 12.1 
 Calculate the standard deviation of the position   x  for a harmonic oscillator in state   n  . 

 We begin by calculating   x   and   2x  :

   

†

†

ˆ

1 ˆ ˆ
2

1 ˆ ˆ
2

1 1 1 1
2

0,

x n x n

n a a n

n a n n a n

n n n n n n

  (12.33) 

    

2 2

2†
2

† † † †
2

2

† †

2

ˆ

1 ˆ ˆ
2
1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

2
1 ˆ ˆ1 1 1

2

ˆ ˆ1 1 1

1 1 2 1
2

1 2 2

2 1 .
2

x n x n

n a a n

n aa n n aa n n a a n n a a n

n n a n n n a n

n n a n n n a n

n n n n n n n

n n n n n n n

n
m

  (12.34)

The fact that the expectation value of the position is 0 makes sense, because the poten-
tial energy is symmetric about 0x   . We can now calculate the standard deviation of 
the position as

   
1/ 21/ 222

2
1
2

nE
x x x n

m m
   . (12.35)     

   12.3    WAVE FUNCTIONS   

 Example 12.1 tells us that for the number states, as  n  increases the uncertainty in the 
position of the oscillator increases as well. To get a better feel for this, we can look 
at the wave functions. Complement 12.A illustrates how to solve the Schrödinger 
equation directly to fi nd both the allowed energies and corresponding wave functions. 
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Once again, we’ll take a different approach here. 
 Let’s start by fi nding the ground state wave function. If we apply the annihilation 

operator to the ground state, the result is

   ̂ 0 0a   . (12.36)

We can project this equation into the position basis, to obtain a differential equation for 
the ground state wave function   0 0x x  :

   
0 0

ˆ ˆ ˆ0 0
2

2
0.

ix a x x p
m

ix x i x
m x

  (12.37)

Here we have used eqs. (10.43), (12.6), and (12.32). Rearranging, we fi nd that

   2
0 0x x x

x
  . (12.38)

In the problems you’ll verify that the properly normalized solution to this differential 
equation is

   
1/ 42 2 2 / 2

0
xx e   , (12.39)

which is a Gaussian wave packet. 
 Previously, we used the creation operator to determine the higher-energy states from 

the ground state. We can use the same basic technique to fi nd the higher-order wave 
functions as well:

   

†

12

ˆ 1 1 ,

ˆ ˆ 1 1 ,
2

ˆ ˆ 1 ,
2 1

1 .
2 1

n n n

a n n n

ix p n n n
m

ix x p n x n
mn

x x x x
xn

  (12.40) 

 This is not an equation we need to solve, it is a formula which allows us to determine 
  1n x   given n x   . For example, if   0n   we see that
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1 0 02

1/ 42 2 2 2 2/ 2 / 2
2

1/ 42 22 2 2 2/ 2 / 2
2

1/ 42 2 2 / 2

1
2

1
2

1 2
22

2 .
2

x x

x x

x

x x x x
x

xe e
x

xxe e

x e

  (12.41)

From   1 x   we can get   2 x  , etc. 
 The general expression for the harmonic oscillator wave functions can be written as

   
1/ 42 2 2 / 21

2 !
x

n nn
x H x e

n
  , (12.42)

where we recall that     is defi ned in Eq. (12.32). In eq. (12.42) the   nH x  ’s are the 
Hermite polynomials, the fi rst few of which are given in  table  12.1  . The Hermite poly-
nomials can be found using the recursion formula:

  1 12 2n n nH x xH x nH x    . (12.43) 

 Before moving on, let’s recall something that we know about the classical harmonic 
oscillator. The total energy of a particle is given by the sum of its kinetic and potential 
energies. Since the kinetic energy is positive, we must have   E V x  . The plot in  fi g. 
 12.2   shows the quadratic potential energy for a harmonic oscillator, as well as a hori-
zontal line representing its total energy. There is a region in the center of the well where 
  E V x  , and the particle is allowed to be. The points where   E V x   are where the 
kinetic energy is zero, and the particle turns around as it reaches its furthest excursions 
from the origin; they are called the classical turning points. We can calculate the turning 

  

   Table 12.1     The first six Hermite polynomials,   Hn x( ) .     

     H x0 1( ) =     

   H x x1 2( ) =     

   H x x2
24 2( ) = −     

   H x x x3
38 12( ) = −     

   H x x x4
4 216 48 12( ) = − +     

   H x x x x5 32 160 1205 3( ) = − +     
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points   nx   for a classical particle, whose energy   nE   is given by the quantum value in 
eq. (12.24):

   

2 2

2

1 1
2 2

12
2

1 2 1 0,1,2,...

n n

n

n

n

E V x

n m x

x n
m

x n n

  (12.44) 

  Figure  12.3   plots the three lowest order wave functions and their square magnitudes 
(corresponding probability densities), and  fi gure  12.4   plots the probability density of a 
higher-order wave function. The probability density corresponding to the wave func-
tion   n x   has   1n   maxima. As  n  increases, the wave function gets broader, consistent 
with eq. (12.35). Between the classical turning points the wave function is oscillatory. 
While the wave function extends beyond the turning points, it decays rapidly in this 
classically forbidden region.    

   12.4    FOCK STATES AND PHOTONS   

 Let’s discuss the Fock states,   n  , of the harmonic oscillator in more detail. We’ll begin 
by noting that the time-dependent wave function for the state   n   is

   /, iE tn
nx t x e   . (12.45)

and its corresponding probability density is

   
2 2/ /, iE t iE tn n

n n nx t x e x e x   , (12.46)

  0 xn-xn

V(x)

En

x     

  Fig 12.2     A quadratic potential energy corresponding to a harmonic oscillator. The total en-

ergy   
n

E   is a horizontal line, and the places where the total energy intersects the potential 
energy correspond to the classical turning points   

n
x  .   
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This probability is independent of time. The oscillator doesn’t oscillate! Why not? 
 As discussed in sec. 9.2, eigenstates of the Hamiltonian are time-independent; they 

acquire a time-dependent overall phase shift, but the state itself is unchanged. In order 
for a state to evolve in time, it must be in a superposition of two, or more, energy eigen-
states. If a harmonic oscillator is in a superposition of states corresponding to two adja-
cent energy levels, it will oscillate at angular frequency    , as you’ll see in the problems. 

  

( )ψ
2

10
x

x10-x10 0 x     

  Fig 12.4     The probability density corresponding to the   n 10  state of the harmonic oscillator. 
The classical turning points   x10   are indicated.   

  

x

(a) (b)

( )ψ0 x

( )ψ2 x

( )ψ1 x ( )ψ 2
1 x

( )ψ 2
2 x

( )ψ 2
0 x

x0-x0

x0-x0

x1-x1

x1-x1

x
2

-x2

x2-x2 x

x

x

x

x

    

  Fig 12.3     (a) The wave functions corresponding to the three lowest energies of a harmonic 
oscillator. (b) The squares of these wave functions, which correspond to the probability den-
sity of fi nding a particle at a particular position. The classical turning points   nx   are indicated.   
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 Ordinarily, we think of the classical limit of quantum mechanics as applying when 
the energy of an object becomes large. For a harmonic oscillator this means that  n  is 
large. However, no matter how large  n  gets, eq. (12.46) tells us that the oscillator won’t 
oscillate. The Fock states   n   are nonclassical states, no matter how large  n  is. From a 
practical standpoint, however, as  n  gets large the energy of the particle grows (  nE n  ), 
while the separation between the energy levels remains constant at   E  ; the ratio 
of the energy separation to the total energy becomes small. As  n  increases, it becomes 
increasingly diffi cult to place a particle in state   n  , without any contributions from 
other states. Indeed, even for small  n  it’s usually experimentally challenging to place a 
quantum system into a Fock state. 

 An example of a harmonic oscillator that can be placed in a Fock state is a single 
atom in a trap. An rf Paul trap uses radio-frequency fi elds applied to three electrodes (a 
center ring shaped electrode, and two end caps) to confi ne ions in three dimensions. 
Along each direction the potential energy seen by the ion can be approximated by a 
harmonic oscillator potential, and using lasers it is possible to excite different states of 
atomic motion along the trap axis. In ref.   [12.1]   the vibrations of a   9Be   ion were 
excited into Fock states of up to   16n  . 

 Another quantum oscillator is described in ref.   [12.2]  . Here, a microscopic mechan-
ical oscillator is cooled to its ground state, and then placed into an oscillation corre-
sponding to the Fock state   1  . A picture of this oscillator is shown in  fi g.  12.5  (a), and 
while it is considered microscopic, it’s clearly VERY large compared to a single atom 
or molecule. Indeed, this is one of the largest objects I’m aware of that has been dem-
onstrated to exhibit nonclassical behavior (along with the diamond crystals described 
in complement 8.A). Note that the oscillation is not an up-and-down oscillation of the 
cantilever, but rather a thickness oscillation of the suspended mass, as shown in  fi g. 
 12.5  (b). This is referred to as a dilatational mode of oscillation.  

 A single mode of the electromagnetic fi eld is another example of a harmonic oscil-
lator that can be placed in a Fock state.   2    That the fi eld is described by a harmonic oscil-
lator will be discussed in detail in  chapter  16  . For now, suffi ce it to say that in this case 
it is not the position of an individual particle that is oscillating, but the fi eld itself. 

 Recall that the allowed energies of a harmonic oscillator are

   1 0,1,2,...
2nE n n   . (12.47)

A single photon of angular frequency     has an energy of    , so this equation indicates 
that for an electromagnetic fi eld,  n  tells us the number of photons in that fi eld.   3    A fi eld 
with no photons (  0n  ) is said to be a vacuum fi eld. The energy of a vacuum fi eld is 
nonzero. The contribution to the fi eld energy by the vacuum is called the vacuum en-
ergy, or the zero-point energy (more on this in  chapter  16  ). 

    2.     Each mode of an electromagnetic fi eld can be labeled by its wave vector and polarization. A plane 
wave fi eld [eg, eq. (2.10)] is a single-mode fi eld. 

    3.     Remember that before any measurement, the fi eld will in general be in a superposition of states with 
different values of  n , and the number of photons is not well defi ned. After we perform a measurement, how-
ever, we can say that the fi eld was measured to contain  n  photons. 
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 In the laboratories described at the end of this book we use spontaneous parametric 
down conversion to create a fi eld containing a single photon, which means that it is in 
the Fock state   1  . This is done by splitting a single photon from a pump beam into two 
photons (the signal and idler photons) using a crystal, as described in sec. 8.1 and lab 
1. Detection of an idler photon projects the signal beam into a single-photon state.    

   12.5    COHERENT STATES   

 The Fock states of the harmonic oscillator are nonclassical, even in the limit of large  n . 
However, we know that classical harmonic oscillators exist. What states can we use to 
describe their motion? 

 The quantum mechanical states that best describe the behavior of a classical har-
monic oscillator are called the coherent states,    . These states are the eigenstates of 
the annihilation operator   ̂a :

   ̂a   . (12.48)

      

  Fig 12.5     (a) A suspended micromechanical oscillator consisting of, from bottom to top, 150 
nm SiO 2 , 130 nm Al, 330 nm AlN, and 130 nm Al. The AlN is a piezoelectric material, and a volt-
age applied between the Al electrodes causes the AlN to expand or contract (alternatively, if 
the AlN expands or contracts, a voltage is generated). Because of this, the oscillator can be 
coupled to an electronic circuit, which can be used to drive and/or measure the oscillations. 
(b) An illustration of the dilatational mode of oscillation; the oscillation frequency is 6.175 
GHz. Reprinted by permission from Macmillan Publishers Ltd: A.D. O’Connell et al., Nature 
 464 , 697, copyright (2010).   
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Recall that   ̂a  is not a Hermitian operator, so its eigenvalues     will in general be com-
plex numbers. As we’ll see, the magnitude of     determines the amplitude of the oscilla-
tion, while the phase of     determines the phase of the oscillation. Note that eq. (12.48) 
also implies that

   †â   . (12.49) 

 Let’s write the state     as a linear combination of Fock states:

   
0

n
n

c n   . (12.50)

Applying the annihilation operator to this state, and using eq. (12.28), we fi nd

   0

1

ˆ ˆ

1 .

n
n

n
n

a c a n

c n n

  (12.51)

We also know that

   '
' 0

'
' 0

ˆ

'

' .

n
n

n
n

a

c n

c n

  (12.52)

Make the substitution   ' 1n n  , and this equation becomes

   1
1

ˆ 1n
n

a c n   . (12.53)

Since the series representation of     must be unique, each of the terms in eqs. (12.51) 
and (12.53) must be equal. Equating the coeffi cients, we fi nd that

   
1

1

,

.

n n

n n

c n c

c c
n

  (12.54)

We pick up a factor of   / n   each time we increase  n . In terms of   0c  , we can write this as

   0!

n

nc c
n

  . (12.55)
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Substituting this into eq. (12.50), we fi nd that

   0
0 !

n

n

c n
n   . (12.56)

The factorial in the denominator ensures that the series converges for all values of    . 
 The factor of   0c   in eq. (12.56) is used for normalization:
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c e

  (12.57)

Taking   0c   to be real, this means

   
2 / 2

0 ,c e   (12.58)

and our fi nal expression for the series representation of the coherent states is

   
2 / 2

0 !

n

n

e n
n

  . (12.59)

Here     can be any complex number. In the case that   0 , we see that

  0 0n   .

The coherent state with   0  is equal to the Fock state with   0n  , which is the ground 
state of the harmonic oscillator.   

   12.5.1    Expectation Values   

 Let’s defi ne a set of dimensionless operators as

   †1ˆ ˆ ˆ ˆ
22

X x a a   , (12.60) 
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    †1 1ˆ ˆ ˆ ˆ
22

P p a a
i

  , (12.61)

where     is defi ned in eq. (12.32). These new variables are simply scaled position and 
momentum operators, and in terms of them we can write the creation and annihilation 
operators as

   ˆ ˆâ X iP  , (12.62)  

    † ˆ ˆâ X iP   . (12.63) 

 We can use eqs. (12.48) and (12.49) to write the expectation value of   X   for a system 
in the state     as

   

†

†

ˆ

1 ˆ ˆ
2
1 ˆ ˆ
2
1
2
Re .

X X

a a

a a   (12.64)

Furthermore, 

    

2 2

† †

2 †2 † †

ˆ

1 ˆ ˆ ˆ ˆ
4
1 ˆ ˆ ˆ ˆ ˆ ˆ .
4

X X

a a a a

a a aa a a

  (12.65)

The commutator in eq. (12.11) tells us that

   
† † †

† †

ˆ ˆ ˆ ˆ ˆ ˆ, 1,

ˆ ˆ ˆ ˆ 1,

a a aa a a

aa a a
  (12.66)

which means we can rewrite eq. (12.65) as

   

2 2 †2 †

22

2

2

1 ˆ ˆ ˆ ˆ2 1
4
1 2 1
4
1 1
4 4

1Re .
4

X a a a a

  (12.67)
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  Fig 12.6     A schematic representation of the coherent state amplitude    in the complex plane. 
Here   X Re   and   P Im  . The gray circle represents uncertainties in  X  and  P .   

The standard deviation of  X  is then

   22 1
2

X X X   . (12.68)

Similarly, it’s straightforward to show that

   ImP   , (12.69)

and

   1
2

P   . (12.70) 

 Because     is a complex number, graphically we can depict it as a point in the 
complex plane. Equations (12.64) and (12.69) suggest that we should think of  X  
and  P  as representing the real and imaginary axes of this plane, as shown in  fi g. 
 12.6  . The mean values of  X  and  P  are determined by    , but there is also some 
uncertainty in these quantities. This uncertainty is represented in  fi g.  12.6   as the 
gray circle. For different values of    , the center of the circle moves to a different 
location in the complex plane. However, the uncertainty is constant, so the size of 
the circle is constant. 

 The position and momentum of a harmonic oscillator correspond to scaled versions 
of  X  and  P , so their uncertainty is also constant for coherent states. In the problems 
you’ll show that the coherent states represent minimum uncertainty states of position 
and momentum for the harmonic oscillator.    

   12.5.2    Time Dependence   

 Assume that the system starts out in the state   0(0)  . Since the harmonic oscilla-
tor Hamiltonian is time independent, the state at a future time is given by
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  (12.71)

The exponential in front is an overall phase factor that is not physically signifi cant, and 
which can be safely ignored. What  is  physically signifi cant is the fact that the state in 
eq. (12.71) remains a coherent state at all times. The eigenvalue of   ̂a  associated with 
this state is   0

i tt e  , which has magnitude   0t  . So, if a harmonic oscil-
lator starts out in the state   0  , at future times it will be in the state   0( ) i tt e  . 
The magnitude of the coherent state does not change, only its phase changes. In terms 
of the representation of the coherent state pictured in  fi g.  12.6  ,   t   always remains the 
same distance from the origin, but rotates counterclockwise at angular frequency    . 

 If the state at   0t   is   0  , the time dependence of the expectation value of the posi-
tion of the oscillator can be obtained from eqs.(12.60) and (12.64) as

   
0

0

0 0

0

2

2 Re

2 Re

2 cos

cos .

i i t

x t X t

t
m

e e
m

t
m

A t

  (12.72)

Here   0 2 /A m   represents the amplitude of the oscillation. For the momentum 
of the oscillator, we fi nd from eqs. (12.61) and (12.69) that

   
0 0

0

2

2 Im

2 sin

sin .

p t P t

m t

m t

m A t

  (12.73)
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  Fig 12.7     Probability distributions (normalized histograms) corresponding to measurements 
of the amplitude of the electric fi eld   E  , for a fi eld in a state that is approximately a coherent 
state. The means of the distributions oscillate as the relative phase     between the measured 
fi eld and a reference fi eld is varied, but the width of the distributions remains approximately 
constant. (These data were acquired by A.M. Dawes.)   

These expectation values are consistent with those that we would fi nd for a classical 
harmonic oscillator. As stated above, the magnitude of   0  determines the amplitude of 
the oscillation, and the phase of   0  determines the phase of the oscillation.    

   12.5.3    Wave Functions   

 It is possible to write down the wave functions of the coherent states. In the problems 
you’ll show that if the initial state is   0  , these wave functions are given by

   
1/ 42 22 / 2 /

,

.x x t i p t x

x t x t

e e
  (12.74)

The time-dependent position and momentum expectation values are those of eqs. 
(12.72) and (12.73). The wave function   ,x t   corresponds to a Gaussian wave 
packet with a shape that does not change in time, but a mean position that oscillates 
sinusoidally according to eq. (12.72). The probability density   

2
,x t   is also Gaus-

sian, and its mean clearly oscillates in the same manner. 
 As stated in sec.12.4, the electric fi eld can be described by a harmonic oscillator, and 

as such can exist in a coherent state. Indeed, it can be shown that the output of an ideal 
laser is a coherent state fi eld, typically with a very large amplitude. If care is taken, and 
the fi eld is attenuated so that the amplitude is small, the output of a real laser well 
approximates a coherent state. 
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  Figure  12.7   shows measured probability distributions (normalized histograms) of 
the electric fi eld amplitude   E   for an ensemble of measurements performed on a fi eld 
prepared in nearly a coherent state. Here   E   is equivalent to the “position” of the oscil-
lator. The measured fi eld is seen to have a roughly Gaussian distribution of amplitudes. 
The width of the fi eld amplitude distribution is approximately constant, but the mean 
oscillates sinusoidally.   4    The oscillations in this fi gure are not truly time resolved, but 
are displayed as a function of the phase difference     between the measured fi eld and a 
reference fi eld.   5    The measured fi eld amplitude depends on this phase difference, hence 
the subscript on the fi eld amplitude   E  . 

 As stated above, the coherent states are the closest quantum mechanical analog to 
classical states of motion for a harmonic oscillator. Other quantum systems, besides the 
electromagnetic fi eld, have been placed in coherent states. For example, the trapped 
atom of ref.   [12.1]   and the micromechanical oscillator of ref.   [12.2]   were also placed in 
states that were well described by coherent states.       

   12.6  References    

  [12.1]  D. M. Meekhof et al., “Generation of nonclassical motional states of a trapped atom,” 
Phys Rev. Lett.  76 , 1796 (1996). 

 [12.2] A.D. O’Connell et al., “Quantum ground state and single-phonon control of a mechanical 
resonator,” Nature  464 , 697 (2010).       

   12.7  PROBLEMS    

            12.1*     Show that   †ˆ ˆ, 1a a  .  

      12.2     Verify that   † †ˆ ˆ ˆ,n a a  .  

      12.3*     Show that   †ˆ 1 1a n n n  .  
      12.4*     Verify that the number states satisfy the Heisenberg indeterminacy relation.  
      12.5     Determine the matrix representation of the operator   ̂a  in the number-state basis.  
      12.6     Determine the matrix representation of the operator   †â   in the number-state basis.  

      12.7     For a harmonic oscillator in the state   1 1 2
2

 , verify that the Heisen-
berg indeterminacy relation is satisfi ed.  

      12.8     For a harmonic oscillator in the state   1 2 4
2

 , verify that the 

Heisenberg indeterminacy relation is satisfi ed.  
      12.9     Verify that a harmonic oscillator in a Fock state satisfi es Ehrenfest’s theorem.  

    4.     The normalization of the fi eld amplitude in  fi g.  12.7   is such that for a coherent state fi eld, the displayed 
probability distributions would be expected to have a standard deviation of   1/ 2E  . 

    5.     This phase difference is proportional to the time delay between the measured fi eld and the reference 
fi eld. In this sense, the oscillations in  fi g.  12.7   can be considered to represent oscillations in time. For more 
details about how the data in  fi g.  12.7   were measured, see sec. 16.4 and problem 16.26.  
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      12.10*     Show that   0 x   in eq. (12.39) is a solution to eq. (12.38). Verify that   0 x   is 
normalized.  

      12.11     Given the Hermite polynomials   0 1H x   and   1 2H x x  , generate the Her-
mite polynomials for   2, 3, and 4n  , using the recursion formula.  

      12.12     The Rodrigues formula for the Hermite polynomials is

   
2 2

1
n

n x x
n

dH x e e
dx

  . (12.75)

  Use this formula to generate the fi rst 3 polynomials.  
      12.13     Prove that the wave functions corresponding to the number states of the har-

monic oscillator satisfy the following recursion formula:

   1 11 2n n nn x x x n x   . (12.76)  

      12.14*     For a harmonic oscillator in the state   
1 1 2
2

 , calculate   x t  , 
  p t  , and   H t  .  

      12.15*     For a harmonic oscillator in the state   1
2

n n  , calculate   x t  . 

Under what circumstances does this expectation value oscillate?  
      12.16     Verify that a harmonic oscillator in a coherent state satisfi es Ehrenfest’s 

theorem.  
      12.17*     Show that the coherent states are minimum uncertainty states of position and 

momentum for the harmonic oscillator.  
      12.18     The displacement operator is defi ned as

  
†ˆ ˆˆ a aD e   . (12.77)

  Calculate the result of applying the displacement operator to the ground state of 
the harmonic oscillator. To do this, you will probably fi nd the following relation-
ship useful: if the operators   Â  and   B̂  both commute with their commutator, then

   
1 ˆ ˆ,ˆ ˆˆ ˆ 2

A BA B A Be e e e   . (12.78)

  This relationship is referred to as Glauber’s formula, or the Baker-Hausdorf-
Campbell theorem.  

      12.19*     Project the eigenvalue equation for the coherent states   ̂a t t t   
into the position basis. Verify that the wave functions for the coherent states 
  ,x t  , given in eq. (12.74), are solutions to the resulting equation.  

      12.20     Verify that the expectation values of position and momentum are indeed 
  x t   and   p t  , for a harmonic oscillator whose wave function is   ,x t   
[eq. (12.74)].  

      12.21*     Calculate the probability that a measurement of the photon number will yield  n , 
  P n  , for a fi eld in a coherent state.           



    Complement 12.A      

  Solving the Schrödinger 
Equation Directly   

 In secs. 12.2 and 12.3 we were able to fi nd the eigenvalues and eigenstates of the har-
monic oscillator, and their corresponding wave functions, without directly solving the 
Schrödinger equation. Here we will show that it is possible to obtain the same solutions 
with a direct solution.   

   12.A.1    Solving the Differential Equation   

 The time-independent Schrödinger equation for the harmonic oscillator is

   
2 2

2 2
2

1
2 2

d x m x x E x
m dx

  . (12.A.1)

Defi ne the dimensionless length     as

   m x x  . (12.A.2)

Substituting this into eq. (12.A.1), the Schrödinger equation becomes

   
2

2
22 2

d E
d

  . (12.A.3)

We can further simplify things by defi ning the dimensionless energy     as

   
2E

  , (12.A.4)

which allows us to rewrite eq. (12.A.3) as

   
2

2
2

d
d

  . (12.A.5) 
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 In the limit that    , eq. (12.A.5) becomes

   
2

2
2

d
d

  . (12.A.6)

The solutions to this equation are

   
2 2/ 2 / 2Ae Be   , (12.A.7)

but we know that we must have   0B   for     to be normalizable. Thus, in the limit 
that     we know that the wave function satisfi es

   
2 / 2Ae   . (12.A.8)

This suggests that we make the substitution

   
2 / 2h e   (12.A.9)

in eq. (12.A.5). In the problems, you’ll show that this substitution yields

   
2

2 2 1 0d dh h h
dd

  . (12.A.10) 

 We’ll write the solutions to eq. (12.A.10) as a power series:

   
0

j
j

j

h a   . (12.A.11)

Substituting this series into eq. (12.A.10) yields

   2 1

0 0 0

1 2 1 0j j j
j j j

j j j

j j a ja a   . (12.A.12)

The fi rst two terms in the fi rst sum are 0, and we can pull the     into the second sum, so 
we can rewrite this as

   2

2 0 0

1 2 1 0j j j
j j j

j j j

j j a ja a   . (12.A.13)

Let   ' 2j j   in the fi rst sum, and this equation becomes

   '
' 2

' 0 0

' 2 ' 1 2 1 0j j
j j

j j

j j a j a   . (12.A.14)

Now let   'j j , and we obtain

   2
0

2 1 2 1 0j
j j

j

j j a j a   . (12.A.15)
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Because the power series must be unique, each term in this expansion must vanish for 
the series to sum to 0. We are then left with the recursion relation

   2
2 1

2 1j j
ja a

j j
  . (12.A.16)

As long as this recursion relationship is satisfi ed, the series for   h   in eq. (12.A.11) 
is a solution to the differential equation in eq. (12.A.10). Note that   ja   determines 
  2ja  , which means that the even and the odd terms are separate. All of the values of 
  ja   for even  j  are derived from   0a  , while all of the   ja  ’s for odd  j  are derived from   1a  . 

 Remember, however, that we are ultimately interested in fi nding    , not just   h  . 
  h   must be suffi ciently well-behaved for     to be normalizable, so we need to 
examine the behavior of the series solution for   h   given by eqs. (12.A.11) and 
(12.A.16). In the limit that   j  , the recursion relation of eq. (12.A.16) tells us that

   2 2 .j
j

j

a
a j

  (12.A.17)

To understand what this implies, look at the power series representation of   
2

e  , which is

   
2 2

0 0

1
!

n j
j

n j
j even

e b
n

  , (12.A.18)

where we’ve set   2n j  . For this series, 

    2
!

2

1 !
2

j

j

j
b

jb
  , (12.A.19)

which in the limit   j   becomes

   2 2j
j

j

b
b j

  . (12.A.20) 

 In the limit of large    , the series solution for   h   given in eq. (12.A.11) is deter-
mined by the behavior of the coeffi cients   ja   in the limit of large  j . From the above 
discussion, we see that in the limit of large  j , the coeffi cients   ja   behave the same as the 

coeffi cients in the power series expansion of   
2

e  . This means that for large    ,   
2

h e  , 

and   
2 / 2e   [from eq. (12.A.9)]. Thus, the series solution for   h  , given by eqs. 

(12.A.11) and (12.A.16), grows too rapidly for     to be normalizable. 
 We can fi x this problem by never allowing   j  to get large. In other words, suppose the 

series in eqs. (12.A.11) is truncated at   j n , so that
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0

n
j

n j
j

h a   . (12.A.21) 

 The function   nh   is an  n th  -order polynomial, so the wave function

   
2 / 2

n nh e   (12.A.22)

is guaranteed to be normalizable. The coeffi cients   ja   must still satisfy the recursion 
relation of eq. (12.A.16) in order for   nh   to be a solution to eq. (12.A.10). 

 We can force the series to truncate at   j n  by having   0ja   for   j n . There are two 
requirements to ensure that this is the case. First, examining eq. (12.A.16), we see that 
having

   2 1n n    (12.A.23)

ensures that   2 0ja   when   j n ; this will also ensure that all higher-order terms are 
0 as well. Remember, however, that the even and the odd terms are separate. As we 
use the recursion relation, and increase  j  by 2 in going to higher-order terms, we need 
to ensure that we arrive at   j n  in order for the series to truncate. Thus, the second 
requirement is that if  n  is odd the allowed values for  j  are odd, whereas if  n  is even the 
allowed values for  j  are even. For example, assume that  n  is even; in this case we must 
have   0 0a   and   1 0a  , which ensures that the polynomial contains only even-order 
powers of    . 

 Substituting eq. (12.A.23) into eq. (12.A.4), we fi nd that the allowed energies of the 
harmonic oscillator are

   1 0,1, 2,...
2nE n n   , (12.A.24)

which agrees with eq. (12.24). Thus, the boundary condition that the wave functions 
must be normalizable leads to energy quantization of the harmonic oscillator. 

 With proper choice of   0a   and   1a  , the polynomials   nh   are the Hermite polynomials 
described in sec. 12.3, so after normalization the wave functions given by eq. (12.A.22) 
are the same as those we obtained previously in eq. (12.42).       

   12.A.2  PROBLEMS    

            12.A.1     Verify that substituting   
2 / 2h e   into eq. (12.A.5) yields eq. (12.A.10).  

      12.A.2     Show that for  n  = 0 through  n  = 3, the functions   nh x   are the Hermite polynomials.               
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         CHAPTER 13 

Wave Mechanics 
in Three Dimensions  

    So far we have been discussing the behavior of particles in one spatial dimension. 
However, the world around us is three dimensional. In order to treat some important 
problems, we need to take what we’ve learned about wave mechanics in one dimension 
and generalize it to three dimensions. 

      13.1    THE SCHRÖDINGER EQUATION IN THREE DIMENSIONS   

 The Hamiltonian is the sum of the kinetic and potential energies, and in three dimen-
sions it can be written as 

    
222 2ˆˆˆ ˆˆ ˆ ˆ

2 2 2 2
yx zppp p

H V V
m m m m

r r   , (13.1)

where the three-dimensional (3-D) position and momentum operators are 

    ̂ ˆ ˆ ˆx y zx y zr u u u   , (13.2) 

    ˆ ˆ ˆ ˆx x y y z zp p pp u u u   . (13.3)

Following the procedure in sec. 11.1, we can project the Schrödinger equation [eq. 
(11.1)] into the position basis using the 3-D position eigenstates   , ,x y zr  : 
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22 2

2 2 2 2

2 2 2

ˆ ,

ˆˆ ˆ ˆ ,
2 2 2

, , ,
2

yx z

dH t i t
dt

pp p dV t i t
m m m dt

i dV t i t
m dtx y z

r r

r r r

r r r

  (13.4)

where we have generalized the position-basis representation of the momentum operator 
[eq. (10.43)] into three dimensions. In eq. (13.4) the terms in () are the Laplacian   2  in 
Cartesian coordinates, so we can rewrite eq. (13.4) in a coordinate independent form:

   
2

2 , , ,
2

dt V t i t
m dt

r r r r   . (13.5) 

 Note that the time dependence in eq. (13.5) is the same as in the one-dimensional 
Schrödinger wave equation of eq. (11.8), so we can treat it in the same manner as we 
did in sec. 11.1. We can separate out the time dependence, and write the solution to eq. 
(13.5) as 

    /

,

.

n n n
n

iE tn
n n

n
i tn

n n
n

t c t

c e

c e

r r

r

r

  (13.6)

The wave functions   n r   are solutions to the time-independent, 3-D Schrödinger 
wave equation:

   
2

2

2
V E

m
r r r r   , (13.7)

and the normalization of the three-dimensional wave function is 

    
23 1

all space

d r r   . (13.8) 

 EXAMPLE 13.1 
 Solve the Schrödinger equation [eq. (13.7)] for the “particle in a box.” Assume a rec-
tangular box, with sides of length   xL  ,   yL  , and   zL  ; the potential energy is 0 inside the 
box, and infi nite outside. 

 Inside the box, the Schrödinger equation in Cartesian coordinates is 
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2 2 2 2

2 2 22
E

m x y z
r r   . (13.9)

Since the potential is infi nite outside the box, the wave function must be 0 there. Place 
one corner of the box at the origin. The wave function must go to zero at the boundaries 
of the box:   0x   and   xx L   (and similarly for the  y  and  z  coordinates). 

 A standard technique for solving partial differential equations is separation of vari-
ables. The idea is to look for solutions that are products of functions of the individual 
variables. If we can fi nd such a solution, and if it satisfi es the boundary conditions, then 
we know that the solution must be unique. Here we’ll look for solutions of the form 

    X x Y y Z zr   . (13.10)

Substituting this into eq. (13.9), we obtain 

   

2 2 2 2

2 2 22

.

Y y Z z X x X x Z z Y y X x Y y Z z
m x y z

EX x Y y Z z

       (13.11)

Divide this equation by   X x Y y Z z  , and we fi nd 

    
2 2 2 2

2 2 2
1 1 1

2
X x Y y Z z E

m X x Y y Z zx y z
  . (13.12) 

 Notice that the fi rst term in eq. (13.12) depends only on  x , the second term depends 
only on  y , the third depends only on  z , and the three terms add to a constant. For this 
equation to be true for all values of  x ,  y , and  z , then each term must be constant. (If the 
fi rst term changed with  x , for example, the other two terms could not compensate to keep 
the sum constant, because they have no  x  dependence.) This means that we must have 

    − ( ) ( ) =
2 2

22
1

m X x
d
dx

X x Ex  , (13.13)

and two similar equations for   Y y   and   Z z  . The separation constants satisfy 

    x y zE E E E  . (13.14)

We have taken a 3-D, partial differential equation, and converted it into three, separate, 
ordinary differential equations—one for each variable. 

 Multiply eq. (13.13) by   X x  , and we have the one-dimensional Schrödinger equation 
for a constant, zero potential [eq. (11.22) with   0 0V  ]. The boundary conditions on eq. 
(13.13) are the same as those for the one-dimensional infi nite square well in sec. 11.5, so the 
solutions for the energies   xE   and the wave functions   X x   are the same as we found there:



 304   •  Q U A N T U M  M E C H A N I C S

   
2 2 2

22
x

nx
n

E
mL

, 1, 2,3, . . .xn   , (13.15) 

    
2 sin 0

0

x
x

n x xx

n
x x L

X x L L
elsewhere

  . (13.16) 

 Since the differential equations and boundary conditions for   Y y   and   Z z   are the 
same as those for   X x  , the energies and wave functions will also be the same. The 
fi nal solution is thus 

    
22 22 2

2 2 22
yx z

n n nx y z
x y z

nn n
E

m L L L
 , , 1, 2,3, . . .x y zn n n   , (13.17) 

   
0

8 sin sin sin 0

0

x
yx z

n n n yx y z
x y z x y z

z

x L
nn n

x y z y L
L L L L L L

z L

r   . (13.18)

The wave function is 0 elsewhere.     

   13.2    CENTRAL POTENTIALS   

 A number of interesting problems involve a potential energy   V r   that depends only 
on the distance  r  from a particular point. If that point is placed at the origin of the 
coordinate system, the potential energy depends only on the magnitude of   r , so the 
potential becomes   V r  . A potential energy of this form is called a central potential, 
and the classic example is the Coulomb potential energy of two point charges. Before 
looking at that specifi c problem, we’ll look at some general properties of solutions to 
the Schrödinger equation with a central potential. 

 Central potentials are spherically symmetric, so we’ll use spherical coordinates, as 
shown in  fi g.  13.1  . To transform from Cartesian coordinates to spherical coordinates, 
the following equations are used:

   2 2 2r x y z  , 1
2 2 2

cos z

x y z
, 1tan y

x
  , (13.19)

The inverse transformation is 

    sin cosx r , sin siny r , cosz r   . (13.20)

In these coordinates, the 3-D volume element is 
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    3 2 sind r r drd d   , (13.21)

and the normalization integral for the wave function is thus    

    
2

22

0 0 0

sin 1dr d d r r   . (13.22) 

 The Laplacian in spherical coordinates is 

    
2

2 2
2 2 2 2 2

1 1 1sin
sin sin

r
r rr r r

  , (13.23)

and the time-independent Schrödinger equation is thus 

   

2 2
2

2 2 2 2 2
1 1 1sin

2 sin sin

.

r
m r rr r r

V r E

r r r

r r

   (13.24)

For more information about differential operators in spherical coordinates, see sec. 2.5 
of ref. [13.1].   

   13.2.1    Separation of Variables   

 We’ll use separation of variables, following the general procedure of example 13.1, to 
solve eq. (13.24). Begin by separating the radial and angular dependencies, and writing 
the wave function as 

    ,R r Yr   . (13.25)

Substituting this into eq. (13.24) yields 

  
x

y

z

θ

φ

r

r

    

  Fig 13.1     Spherical coordinates.   
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2 2

2
2 2 2 2 2

,
sin , ,

2 sin sin

, , .

Y R r R r
r R r Y Y

m r rr r r

V r R r Y ER r Y

 

Multiplying through by   2 22 ,mr R r Y  , and rearranging, we fi nd 

    

2 2
2

2

2 2

1 2

1 1 1sin , , 0 .
, sin sin

mr R r V r E r
R r r r

Y Y
Y

  (13.27) 

 The fi rst two terms of eq. (13.27) depend only on  r , while the last term depends only 
on the angular variables. The only way that the radial and angular pieces can add to 0, 
for all values of  r ,     and    , is if each piece is constant. Here we’ll choose this is separa-
tion constant to be   1l l  , for reasons that will become apparent shortly. (There is no 
loss in generality in choosing the constant in this manner, because at this point  l  can be 
any complex number.) With this choice, eq. (13.27) yields the two equations 

    2 2
2

1 2 1mr R r V r E r l l
R r r r

  , (13.28) 

    
2

2 2
1 1 1sin , , 1
, sin sin

Y Y l l
Y

  . (13.29) 

 To place eq. (13.28) in a more useful form, we multiply through by   2/R r r   and 
rearrange, to obtain 

    
2

2
2 2 2

11 2 0
2

l lmr R r V r E R r
r rr mr

  . (13.30)

This equation is called the radial equation, and to solve it we must specify   V r  . We’ll 
tackle that problem later, but now we’ll solve the angular equation.    

   13.2.2    The Angular Equation   

 If we multiply eq. (13.29) by   2sin ,Y  , we can rewrite it as 

    
2

2
2sin sin , 1 sin , , 0Y l l Y Y   . (13.31)

This equation is independent of the potential. As such, the angular dependence of the 
solutions will be the same for  any  problem involving a central potential. One frequently 

(13.26)
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comes across eq. (13.31) in physics, not just in quantum mechanics. It arises when 
solving second-order differential equations in spherical coordinates. We’ll solve it here 
by again using separation of variables. 

 Write the functions   ,Y   as 

    ,Y   . (13.32)

Substitute this into eq. (13.31), and then divide through by    . The result is 

    
2

2
2

sin 1sin 1 sin 0l l   . (13.33)

The fi rst two terms depend only on    , while the last term depends only on    . Once 
again, in order for the two pieces to add to 0, for all possible values of     and    , each 
piece must be constant. Call the separation constant   2

lm  , and we end up with 

    
2

2
2

1
lm   , (13.34) 

    2 2sin sin 1 sin ll l m   . (13.35)      

   13.2.3    The Azimuthal Equation   

 The azimuthal equation, eq. (13.34), can be rewritten as 

    
2

2
2 lm   . (13.36)

This equation has solutions 

    l

l

im
m e   , (13.37)

where the subscript on   
lm   indicates that the solutions depend on   lm  . At this point 

  lm   is any complex number. However, we now need to apply the boundary conditions. 
In spherical coordinates, if we increase the value of     by   2  , we return to the same 
point in space (see  fi g.  13.1  ). The boundary condition on   

lm   is that it must be 
single valued when we do this. Thus, we must have 

    2
l lm m   . (13.38)
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This means 

    2 2ll l limim im ime e e e   , (13.39) 

    2 1lime   . (13.40)

This constrains   lm   to be an integer, and the fi nal solution to the azimuthal equation is 

    l

l

im
m e  0, 1, 2, . . .lm   . (13.41) 

 The functions   
lm   are orthogonal on the interval   0 2  :

   
2

0

2
l l l lm m m md   , (13.42)    

   13.2.4    The Polar Equation   

 The polar equation, eq. (13.35), can be rewritten as 

    2 2sin sin 1 sin 0ll l m   . (13.43)

We’ll just state the solutions to this equation.   1    In order for the solutions to be fi nite 
over the interval   0  ,  l  must be a nonnegative integer. With this constraint, the 
solutions are 

    ( ) cosl lm m
l lP   , (13.44)

where the functions   lm
lP x   are the associated Legendre functions. They are associated 

with the Legendre polynomials,   lP x  , and for nonnegative   lm   the   lm
lP x  ’s are given 

by 

    
/ 221

l
l

l

mmm
ll

dP x x P x
dx

 0lm   . (13.45)

The Rodrigues formula for the Legendre polynomials is 

    21 1
2 !

l l
l l

dP x x
dxl

  . (13.46)

   1.     For a derivation of the solutions, see ref. [13.2] (especially problem 2 of that reference). 
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Combining the last two equations, we fi nd that 

    
/ 22 21 1 1

2 !

l
l

l

l mm lm
l l

dP x x x
dxl

  . (13.47) 

 Equation (13.47) for   lm
lP x   allows for negative values of   lm  , as long as   0ll m  . 

It can also be shown that the   lm
lP x  ’s for negative values of   lm   can be obtained from 

those with positive values by using 

    
!

1
!

ll l
m lm m

l l
l

l m
P x P x

l m
  . (13.48)

Calculating   lm
lP x   using eq. (13.47) involves taking the   ll m  - th  derivative of a 2 l -

 th -order polynomial, which yields 0 if   lm l  ;   0lm
lP x   means that the wave function 

is 0 everywhere, which is not allowed. Equation (13.47) thus constrains the allowed 
values of   lm   to be   lm l . For each value of   lm  , the associated Legendre functions form 
an orthogonal set on the interval   1 1x  . The orthogonality relationship is 

   
1

1 0

!2sin cos cos
2 1 !

l l l l lm m m m
l ll ll l

l

l m
dx P x P x d P P

l l m
  . (13.49) 

 To summarize, the allowed values of  l  are 

    0, 1, 2, . . .l   , (13.50)

and for a given value of  l , the allowed values for   lm   are 

    , 1, . . . , 1,lm l l l l   . (13.51)

Does this look familiar? We’ll come back to that question, and discuss the physical 
interpretation of these results, in sec. 13.3.    

   13.2.5    Spherical Harmonics   

 We can combine the functions   
lm   and   ( )lm

l  , as in eq. (13.32), and obtain the 
solutions   ,lm

lY   of the full angular differential equation [eq. (13.31)]:

   
1/ 2

2 1 !
, 1 cos

4 !
ll l l

m lm m im
l l

l

l l m
Y P e

l m
  . (13.52)
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Here we’ve also included a normalization factor. The functions   ,lm
lY   are called 

the spherical harmonics.   2    Combining eqs. (13.48) and (13.52), we can see that the 
  ,lm

lY  ’s satisfy 

    , 1 ,ll l
mm m

l lY Y   . (13.53)

The spherical harmonics are a complete set of orthonormal functions over   0 2   
and   0  ; thus, they satisfy the orthogonality relation 

    
2

0 0

sin , ,l l

l l

m m
l l m ml ld d Y Y   . (13.54)

The factor of   sin   in this equation comes from the volume element in spherical coor-
dinates [eq. (13.21)]. 

  Table  13.1   lists the formulas for some of the low-order spherical harmonics.  Figure 
 13.2   plots the real and imaginary parts of these same functions. To observe plots of 
higher-order spherical harmonics, see ref. [13.3].             

   13.3     ORBITAL ANGULAR MOMENTUM   

 I hope the allowed values for  l  and   lm   [eqs. (13.50) and (13.51)] remind you of the an-
gular momentum quantum numbers we discussed in  chapter  7   (without the half integer 
values for  l , a difference that will be discussed below). It shouldn’t be too surprising 
that angular momentum would come up. We have been fi nding the eigenstates of the 

    2.     There are several, slightly different, defi nitions for the spherical harmonics, and the defi nition here is 
the same as that in sec. 11.5 of ref. [13.1]. The factor of   1 lm   ensures the proper phase relationship between 
the   ,lm

lY  ’s (see problem 13.12). 

     Table 13.1     The spherical harmonics for   l 0   through   l 3  .       

    
0

0
1,
4

Y
     

2 2 2
2

15, sin
32

iY e
    

  
0

1
3, cos

4
Y

    
0 3

3
7, 5cos 3cos

16
Y

    

   
1

1
3, sin

8
iY e

     
1 2

3
21, sin 5cos 1

64
iY e

    

   
0 2

2
5, 3cos 1

16
Y

     
2 2 2

3
105, sin cos
32

iY e
    

   
1

2
15, sin cos
8

iY e
     

3 3 3
3

35, sin
64

iY e
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Hamiltonian, which describes the energy of a quantum mechanical particle. An object 
which is rotating (i.e., has orbital angular momentum) has kinetic energy. Indeed, we 
can express the Hamiltonian of eq. (13.1) in terms of the orbital angular momentum 
operator   L̂  as 

  

l=3, m
l
=0

l=0, m
l
=0

l=3, m
l
=1, Re

l=3, m
l
=1, Im

l=3, m
l
=2, Re

l=3, m
l
=2, Im

l=3, m
l
=3, Re

l=3, m
l
=3, Im

l=1, m
l
=0

l=2, m
l
=0 l=2, m

l
=1, Re l=2, m

l
=2, Re

l=2, m
l
=1, Im l=2, m

l
=2, Im

l=1, m
l
=1, Re

l=1, m
l
=1, Im

x

y

z

    

  Fig 13.2     The real and imaginary parts of the spherical harmonics for   l 0  through   l 3 . Here 
lighter shading (more white) corresponds to more positive values, while darker shading (more 
black) corresponds to more negative values.   
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2 2ˆˆˆ ˆ

2 2
rp LH V
m I

r   , (13.55)

where  I  is the moment of inertia of the particle about the origin. The fi rst term in this 
equation represents the linear (radial) kinetic energy, while the second represents the 
rotational kinetic energy. Let’s show that eq. (13.55) yields the Schrödinger equation in 
spherical coordinates [eq. (13.24)]. 

 In analogy with classical physics, we know that the orbital angular momentum oper-
ator is given by 

    ˆ ˆ ˆL r p  . (13.56)

In the problems you’ll show that the components of   L̂  can be represented in spherical 
coordinates as 

    ̂ sin cot cosxL i   , (13.57) 

    ̂ cos cot sinyL i   , (13.58)

and 

    ̂ zL i   . (13.59)

From these equations for the components, it can be shown that 

    
2

2 2 2 2 2
2 2

1 1ˆ ˆ ˆ ˆ sin
sin sinx y zL L L L   . (13.60) 

 Next, we need to fi nd the radial momentum operator   ̂ rp  . Since   ̂r   and   p̂  do not com-
mute, it’s not obvious whether we should use   ˆ ˆˆ /rp rr p , or   ˆ ˆˆ /rp rp r   (here 
  ̂ / rr   is the radial “unit” vector operator). The solution to this conundrum is to use a 
symmetric combination of both possibilities:

   ˆ ˆ1 ˆ ˆˆ
2rp

r r
r rp p   . (13.61)

In the problems you’ll prove that the position representation of this operator can be 
written as 

    1ˆrp i
r r

  . (13.62)
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Squaring this, we obtain 

    

2
2

2
2

2

2 2
2

1ˆ

2

1 .

rp i
r r

r rr

r
r rr

  (13.63)

To verify that this equation is correct, it is best to explicitly place a trial function to the 
right of the operator.   3    

 The moment of inertial of a point mass about the origin is   2I mr  , so the eigenvalue 
equation for the Hamiltonian of eq. (13.55) is 

    2 2

2

ˆ ,

ˆˆ ˆ .
2 2

r

H E

p L
V E

m mr

r r

r r r
  (13.64)

Substituting eqs. (13.60) and (13.63) into this, we obtain eq. (13.24) (see the problems).   

   13.3.1    Eigenstates of Orbital Angular Momentum   

 The operator   L̂  is an angular momentum operator, so it must satisfy all of the proper-
ties of angular momentum operators that we described in  chapter  7  . For example, its 
components must satisfy the commutation relations 

    ˆ ˆ ˆ,x y zL L i L , ˆ ˆ ˆ,y z xL L i L , ˆ ˆ ˆ,z x yL L i L ,  (13.65)

and each of the components must commute with   2L̂  : 

  2ˆ ˆ, 0iL L   , (13.66)

where   , ,i x y z . We also know that the eigenvalues and eigenstates of orbital angular 
momentum are given by 

    2 2ˆ , 1 ,l lL l m l l l m   , (13.67) 

    3.     Note that   ̂ rp   is not well defi ned at   0r  . As defi ned in eq. (13.61), the operator   ̂ rp   is Hermitian, but 
does not correspond to an observable [13.4]. 
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    ̂ , ,z l l lL l m m l m   . (13.68)

As discussed in  chapter  7  , because the component operators do not commute with each 
other, it is not possible to know with certainty the value of more than one individual 
component of orbital angular momentum at one time. 

 To show that eqs. (13.67) and (13.68) are consistent with what we’ve learned so far 
in this chapter, we can use eq. (13.60) to express eq. (13.67) in the position basis:

   

2 2

2
2 2

2 2

2
2

2

ˆ , 1 , ,

1 1sin , 1 , ,
sin sin

sin sin , , 1 sin , .

l l

l l l

l l

m m
l l

m m m
l l l

L l m l l l m

Y l l Y

Y Y l l Y

r r

          (13.69)

Here we have made the assignment   , ,lm
l ll m Yr  . We can do this because eq. 

(13.69) is equivalent to eq. (13.31). 
 As a fi nal reassurance that everything is consistent, eq. (13.68) can be expressed in 

the position basis using eq. (13.59), and the result is 

    
ˆ , ,

, , .l l

z l l l

m m
ll l

L l m m l m

i Y m Y

r r
  (13.70)

Using the defi nitions of the spherical harmonics in eq. (13.52), it is straightforward to 
verify that this equation is satisfi ed. 

 The above discussion confi rms that the states   , ll m   are states of defi nite angular 
momentum, and satisfy all of the properties of angular momentum states that we 
described in  chapter  7  . The one difference is that the orbital angular momentum quan-
tum number  l  may only take on integer values [eq. (13.50)], while the spin and total 
angular momentum quantum numbers  s  and  j  may also take on half integer values [eqs. 
(7.13) and (7.25)]. As described in sec. 13.2, this is because the wave functions corre-
sponding to orbital angular momentum   ,lm

lY   are only well behaved for integer 
values of  l .     

   13.4    THE HYDROGEN ATOM   

 Nearly everything we have described thus far in this chapter applies generally to any 
central potential   V r  . One of the most important problems in physics is that of the 
hydrogen atom; since it involves a central potential, let’s examine it now.   
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   13.4.1    The Radial Equation   

 A hydrogen atom consists of a proton and an electron held together by the electromag-
netic force. If we place the proton at the origin of our coordinate system, the potential 
energy of the system is given by the Coulomb potential:

   
2

04
eV r

r
  , (13.71)

where   191.60 10 Ce   is the magnitude of the electron charge, and 
  12 2 2

0 8.85 10 C / Nm   is the permittivity of free space. Substituting this potential 
into the radial part of the Schrödinger equation [eq. (13.30)] yields 

    
22

2
2 2 2

0

11 2 0
4 2

l lm er R r E R r
r r rr mr

  . (13.72)

The mass here is the mass of the electron,   319.11 10 kgem m  , since it is the elec-
tron that is moving, while the proton is assumed to be fi xed at the origin.   4    

 To simplify eq. (13.72), we’ll begin by defi ning a dimensionless radial coordinate    , 
which is given by 

    8mEr   . (13.73)

At fi rst glance it may appear that     is imaginary, but on the contrary, the negative sign 
in the square root is chosen to ensure that     is real. This is because the potential energy 
in eq. (13.71) is everywhere negative, which means that the bound-state solutions must 
have negative total energy. If we substitute eq. (13.73) into eq. (13.72), and expand the 
derivative, we obtain 

    
2

2 2

12 1 0
4

l l
R R R   . (13.74)

Here we’ve also defi ned the dimensionless parameter    , which is given by 

    
2

04 2
e m

E
  . (13.75) 

 To simplify eq. (13.74), look at the asymptotic behavior of the differential equation 
in the limits of large and small    . In the limit    , eq. (13.74) is given approximately 
by 

    4.     A slightly more accurate treatment places the origin of the coordinate system at the center of mass, in 
which case the mass of the electron is replaced by the reduced mass   /e p e pm m m m  . For more details 
about center of mass coordinates, see ref. [13.5]. 
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2

2
1
4

R R   , (13.76)

which has a solution of the  form 

    / 2 / 2R Ae Be   . (13.77)

The growing exponential is not normalizable, so   0B  ; this means 

    / 2R e   . (13.78)

In the limit   0 , the approximate expression for eq. (13.74) is 

    
2

2 2

12 0
l l

R R R   . (13.79)

Look for solutions to this equation in terms of powers of    :   jR  . Substituting in 
a solution of this form, eq. (13.79) becomes 

    

2 1
2

121 0 ,

1 2 1 0 ,

1 1 0 .

j j jl l
j j j

j j j l l

j j l l

  (13.80) 

 Clearly   j l  is a solution to this equation. However, there are two solutions to this 
second-order equation, and the other is   1j l  . We know from the angular solu-

tions that   0l  . In the limit   0 ,   1l   diverges, which is not allowed. We thus have 

    0
lR   . (13.81) 

 The above discussion suggests that we should make the substitution 

    / 2lR e w   . (13.82)

This is a substitution, not an approximation. In the problems you’ll show that substitut-
ing eq. (13.82) into eq. (13.74) yields the following equation for   w  :

   
2

2 2 1 1 0w l w l w   . (13.83) 
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 At this point there are two ways to proceed. One way is to look for solutions for 
  w   in the form of a power series—complement 13.B follows this approach. The 
other way is to realize that eq. (13.83) is a well-studied differential equation, whose 
solutions are known. If we make the substitutions 

    1j l   and  2 1k l ,  (13.84) 

 eq. (13.83) becomes

   
2

2 1 0w k w jw   . (13.85)

The solutions to this equation are given by the associated Laguerre polynomials (ref. 
[13.1], sec. 13.2):

   k
jw L   . (13.86)

The associated Laguerre polynomials can be determined from their Rodrigues 
representation:

   
!

k j
k j k
j j

e dL e
j d

  . (13.87)

They also satisfy the recursion relation 

    1 11 2 1k k k
j j jj L j k L j k L   . (13.88)     

   13.4.2    Energies   

 If  j  is not 0 or a positive integer,   w   diverges as   e   as    , which means that   R   
diverges as   / 2e  , and this is not allowed because   R   would not be normalizable. 
Since  j  must be an integer, eq. (13.84) tells us that     must be an integer, so it is cus-
tomary to set   n ;  n  is called the principal quantum number. Since   0j  , eq. (13.84) 
requires that   1n l  , and since   0l   [eq. (13.50)], we must have   1,2,3,...n  . 

 Setting   n  in eq. (13.75), and solving for the energy, yields 

    
22

1
2 2 2

0

1 13.6eV
2 4n

Em eE
n n n

 , 1, 2,3,...n   , (13.89)

The energies of the hydrogen atom are depicted in  fi g.  13.3  . They depend on the princi-
pal quantum number  n  (but not on  l , even though the wave functions depend on  l ), and 
agree very well with experimental measurements. In the experiments the frequencies 
(wavelengths) of light emitted or absorbed by hydrogen atoms are measured. These 
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measurements do not directly determine the energy levels, but rather the differences 
in energies between levels; this is because absorption or emission of a photon corre-
sponds to a change in energy.  Figure  13.3   shows downward arrows indicating possible 
energy level transitions from higher energy states to lower energy states. In an experi-
ment measuring an emission spectrum, each of these transitions would show up as a 
distinct measured frequency. In terms of the energies of the initial and fi nal states, the 
frequency of the emitted photon is given by    

    i fE EEf
h h

  . (13.90) 

 Spectroscopists often group transitions together into “series.” Each series corre-
sponds to transitions that end at a particular energy level. The Lyman series corre-
sponds to transitions that end in the   1n   state, while the Balmer and Paschen series 
transitions end in the   2n   and   3n   states, respectively. The Balmer series has several 
visible lines, and these are the lines you see if you look at a hydrogen discharge tube 
through a diffraction grating. The most prominent of these is the   3n   to   2n   transi-
tion, which corresponds to a wavelength of 656 nm, and appears quite red. 

 The energies of the hydrogen atom we have just derived [eq. (13.89)] agree perfectly 
with those predicted by the Bohr model of the atom.   5    The difference is that quantum 

  

E1= -13.6 eV

E2= -3.40 eV

E3= -1.51 eV
E4= -0.85 eV
E6= -0.38 eV

E5= -0.54 eV
E

∞
= 0

Lyman

series

Paschen

series

Balmer

series

    

  Fig 13.3     A partial energy level structure for hydrogen, indicating some transitions between 
levels.   

    5.     For a discussion of the Bohr model, see, for example, ref. [13.6]. 
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mechanics represents a full theory, whereas the Bohr model is simply that, a model. 
These energies are correct, given the Hamiltonian that we have been considering (i.e., 
that the potential energy is due to the Coulomb interaction of the electron with the 
nucleus). However, there are other interactions that we have ignored. For example, we 
have ignored the spins of both the proton and the electron, and these spins turn out to 
play a role in determining the energies. In  chapter  14   we’ll examine some of the correc-
tions to the energy level structure of hydrogen. For now we’ll note that the energies we 
have derived here are correct to about 1 part in   410  , if we replace the mass of the elec-
tron by the reduced mass (see note 4, on page 315).    

   13.4.3    Radial Wave Functions   

 When describing the wave functions of the hydrogen atom, it is convenient to use the 
parameter   0a  , which is the Bohr radius:

   
2

100
0 2

4
0.529 10 m 0.529Åa

me
  . (13.91)

We can write the energies of the hydrogen atom [eq. (13.89)] in terms of the Bohr 
radius as 

    
2

2 2
0

1
2nE

ma n
, 1, 2,3,...n   . (13.92)

The dimensionless radial coordinate     of eq. (13.73) is then given by 

    
0

2r
na

  . (13.93) 

 We can now use eqs. (13.82), (13.86), and (13.93) to reassemble the radial wave 
functions; the result is 

    0/ 2 1
12 3

0 00

1 !2 2 2
!

l
r na l

nl n l
n l r rR r e L

na nan a n l
  , (13.94)

where we have also included a normalization factor. A list of some of the low-order 
  nlR r  ’s is given in  table  13.2  , and plots of these functions are shown in  fi g.  13.4  . For 
a given value of  l , the radial wave functions corresponding to different  n  values are 
orthogonal. The orthogonality relation is 

    2

0
nl n l nndr r R r R r  . (13.95)

This equation implies that the radial probability density   nlp r   is given by 
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22

nl nlp r r R r   . (13.96)

The geometrical factor of   2r   comes from the volume element in spherical coordinates 
[eq. (13.21)].        

 From  fi g.  13.4   we note a few features of the radial probability density   nlp r  . The 
fi rst is that   nlp r   contains   n l  maxima. The second is that as  n  increases, the electron 
is most likely to be found further from the origin. This is most easily quantifi ed for 
states with   1l n  , for which   nlp r   has only a single maximum. For these states, 
you’ll show in the problems that the maximum in the radial probability density occurs at 

  

(a)

(b)

(c)

(d)

r/a0 r/a0     

  Fig 13.4     (a) Plots of the radial wave functions   nlR r   for   n 1  and   n 2 , and (b) the corre-
sponding radial probability densities   nlp r  ; the legend in (a) is also applicable to (b). (c) Plots 
of the radial wave functions   nlR r   for   n 3 , and (d) the corresponding radial probability 
densities   nlp r  ; the legend in (c) is also applicable to (d).   

     Table 13.2     The radial wave functions for   1n   through   3n  .       
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    2
0r n a   . (13.97)

Thus, the size of an atom grows rapidly with increasing  n ; this can also be seen in 
 fi g.  13.5 .      

   13.4.5    Eigenstates   

 The states of the hydrogen atom are are   , , ln l m  . The principal quantum number,  n , 
determines the energy,  l  determines the orbital angular momentum, and   lm   determines 
the  z -component of the orbital angular momentum. These states are simultaneous 
eigenstates of   Ĥ ,   2L̂  , and   ̂ zL  :

  

n=1

n=3

n=2

l=0 l=1 l=2

1s

2s 2p

3s 3p 3d

z

x

    

  Fig 13.5     Depictions of the probability density   nl r
2

0   for states through   n 3 ; lighter corre-
sponds to higher probability. These distributions are rotationally symmetric about the  z -axis. 
The spectroscopic designation for each of the states is shown above each fi gure.   
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   ˆ , , , ,l n lH n l m E n l m   , (13.98) 

    2 2ˆ , , 1 , ,l lL n l m l l n l m   , (13.99) 

    ̂ , , , ,z l l lL n l m m n l m   . (13.100)

The energies   nE   are given in eq. (13.89). In order for   Ĥ ,   2L̂  , and   ̂ zL   to have simultaneous 
eigenstates, they must all commute with each other. We know that   2L̂   and   ̂ zL   commute, 
and in the problems you’ll prove that   Ĥ  commutes with these operators as well. The 
observables   H ,   2L  , and   zL   are said to form a complete set of commuting observables for 
the hydrogen atom, because the eigenstates of their corresponding operators uniquely 
specify the state of the system (ignoring spin). 

 The allowed values for  n  are   1,2,3,...n   . For a given value of  n , the allowed values 
of  l  are   0,1,..., 1l n  , and for a given value of  l , the allowed values of   lm   are 
  0, 1, 2, . . .,lm l  . This means that for each value of  n , there are   2n   allowed states. 
Since the energy of the hydrogen atom depends only on  n , each energy level has a 
degeneracy of   2n  . 

 Frequently the states are labeled by spectroscopic notation. In this notation there is 
a number that specifi es the value of  n , and a letter that specifi es the value of  l . This let-
tering scheme is:  s  for   0l  ,  p  for   1l  ,  d  for   2l  ,  f  for   3l  ,  g  for   4l  , and the letters 
continue alphabetically for higher  l  values. The spectroscopic notation for some states 
is shown in  fi g.  13.5  . 

 The full wave functions for the hydrogen atom are given by 

    , , ,l

l

m
l nlm nl ln l m R r Yr r   . (13.101)

Plots of some of the wave functions are shown in  fi g.  13.5  .   6    The states are orthogonal, 

    , , , ,
l ll l nn ll m mn l m n l m   , (13.102) 

 and so are the wave functions:

   
2

2 *

0 0 0

sin
l l l lnlm n l m nn ll m mdr d d r r r   . (13.103)

The orthonormality of the wave functions is guaranteed by Eqs. (13.54) and (13.95).        

    6.     To view three-dimensional representations of these and other wave functions, see ref. [13.7]. 
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   13.5    MULTIELECTRON ATOMS   

 Hydrogen is the simplest atom, because it has only a single electron. Before describing 
how multiple electrons arrange themselves within more complicated atoms, we fi rst 
need to discuss some general properties of identical quantum particles.   

   13.5.1    Identical Particles   

 In classical physics particles may look the same, but they are never indistinguishable; 
in principle we can tag them in some way so as to tell them apart. However, electrons 
and other fundamental particles are identical (indistinguishable)—there is no way, even 
in principle, to tell them apart. This turns out to have a profound effect on the behavior 
of multiparticle systems. 

 Of course, if the wave functions of two particles are localized, and do not overlap, 
we can distinguish between them—one is here, and the other is there. If particle 1 is 
known to be in state   m  , and particle 2 is known to be in state   n  , we can describe the 
state of the two particle system as 

    12 1 2m n   . (13.104)

However, if the wave functions of the particles overlap, as is the case for the electrons 
in an atom, we need to account for the fact that the particles are indistinguishable when 
describing the state of the two-particle system. Since we can’t tell the particles apart, 
how do we know that it’s particle 1 in state   m  , and particle 2 in state   n  , and not the 
other way around? We don’t, so we have to allow for both possibilities. There are two 
possible combinations of the two-particle states. One is symmetric, 

    
1 2 1 212

1
2s m n n m   , (13.105)

and the other is antisymmetric, 

    1 2 1 212
1
2a m n n m   . (13.106)

If the particles are exchanged, the symmetric and antisymmetric combinations satisfy:

   12 21s s   , (13.107) 

    12 21a a   . (13.108)

Generalizing to larger numbers of particles, you’ll see in the problems that the possible 
combinations are more complicated, but that it is still possible to create symmetric and 
antisymmetric combinations. For the symmetric combination, if any two particles are 
exchanged the state of the system is unchanged [as in eq. (13.107)]; for the antisymmetric 
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combination, the state acquires a minus sign on the exchange of any two particles [as in 
eq. (13.108)]. 

 In relativistic quantum mechanics, it can be proven that the state of a collection of 
bosons (particles with integer spin) must be symmetric, while the state of a collection 
of fermions (particles with half-integer spin) must be antisymmetric. This is the spin-
statistics theorem, and it results in an important consequence for the allowed states of 
fermions. Consider the antisymmetric combination of fermions described by eq. 
(13.106). If both particles are in the same state (i.e.,   m n  ), then the total state 
would be 0, which is not allowed. This leads to the Pauli exclusion principle, which 
says that no two fermions can be in the same state.    

   13.5.2    Atomic Structure   

 With the Pauli exclusion principle in hand, we can now discuss how electrons arrange 
themselves in multielectron atoms. We’ll limit ourselves to the ground states of atoms. 
The fi rst thing to note is that for the ground state, electrons fi ll states starting with 
the lowest energies, working toward the highest. Thus, the ground state of hydrogen 
(atomic number   1Z  ) consists of a single electron in the 1 s  state. 

 Now consider helium (  2Z  ). Because electrons are spin-1/2 particles they are fer-
mions, and the exclusion principle would seem to imply that we could not place a sec-
ond electron in the 1 s  state. However, up to now we’ve been ignoring spin. When we 
take spin into account, we note that an electron can have either spin-up or spin-down, 
which correspond to different states. Thus, it is possible to place two electrons in the 1 s  
state, but only as long as they have opposite spins. This is what happens in the ground 
state of helium. 

 The fi rst two electrons in lithium (  3Z  ) go into the 1 s  energy level. The third 
electron cannot go into that level because it is full, so this electron must move up to 
  2n  . At the level of approximation we have been using here, the   0l   (2 s ) and   1l   
(2 p ) states of a one-electron atom have the same energy. However, for multi-electron 
atoms this is not the case, because the electrons in the 1 s  state remain close to the 
nucleus, as seen in  fi g.  13.4  (b). The negative charge of these electrons tends to 
“screen” the positive nuclear charge from electrons in the   2n   states. Note, how-
ever, in  fi g.  13.4  (b) that an electron in the 2 s  state has a higher probability of being 
very close to the nucleus than an electron in the 2 p  state. The 2 s  electron “feels” 
more of the positive nuclear charge, and will thus have a lower energy. This means 
that the third electron in lithium goes into the 2 s  state. Beryllium (  4Z  ) has four 
electrons, and the fourth electron also goes into the 2 s  state, with a spin opposite the 
third electron. 

 The fi fth electron in boron (  5Z  ) must go into one of the 2 p  states. The 2 p  
energy level can accommodate six electrons (  1l  , so there are three allowed val-
ues of   lm  , each with two possible spin states), so the atoms boron through neon 
(  10Z  ) have outermost electrons that fi ll up the 2 p  states. Elements with higher 
atomic numbers have electrons that continue to fi ll up levels of increasing energy. 
It is not always obvious at fi rst which level will be the next highest (e.g., the 4 s  
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level fi lls before the 3 d  level), but it is possible to calculate the energies, and hence 
determine into which state electrons will go. The energy level structure of atoms 
determines their properties, and hence the arrangement of the periodic table. For 
more details, see ref. [13.8]. 

 For atomic physicists the alkali metals, which reside in the fi rst column of the peri-
odic table, play an important role. This is because these elements have electrons that fi ll 
lower-energy, inner-core states, leaving a single outer-most electron in an   0l   state. 
Because the inner electrons are tightly bound, it is this single outer electron that largely 
determines the chemical and spectroscopic properties of these elements. Because there 
is only a single electron that determines these properties, they are comparatively easy 
to understand.    

   13.5.3    Rydberg Atoms and Electron Wave Packets   

 Atoms in which an electron is excited to a very high state (typically   40n   or higher) 
are referred to as Rydberg atoms. The alkali metals are most often used in experiments 
involving Rydberg atoms. 

 Rydberg atoms have some very interesting properties. First, from eq. (13.97) we see 
that Rydberg atoms are much larger than typical ground state atoms; a hydrogen atom 
excited to   300n   has a diameter of nearly 10   m. Second, for an electron in a state 
with large  n , there are a very large number of available  l  and   lm   states. It is possible to 
place an electron in a superposition of these atomic states to create an electron wave 
packet within the atom. 

 An electron in an atomic eigenstate is not well localized. Indeed, as shown in  fi g. 
 13.5  , the electron may be very spread out. However, an electron in a wave packet state 
of a Rydberg atom may be well localized. It may display some of the behavior of a 
“classical” Bohr atom; it may orbit the nucleus in much the same way that a planet 
orbits the sun. For an accessible introduction to electron wave packets, see ref. [13.9].       

   13.6  References  

    [13.1]  H.J. Weber and G.B. Arfken,  Essential Mathematical Methods for Physicists  (Academic 
Press, San Diego, 2004). 

  [13.2]  M.L. Boas,  Mathematical Methods in the Physical Sciences, 3rd ed . (John Wiley and 
Sons, Hoboken, NJ, 2006), Ch. 12, Sec. 10. 

  [13.3]  B. Reid,  Particle on a Sphere—Spherical Harmonics ,  http://www.bpreid.com/poas.php . 
  [13.4]  A. Messiah,  Quantum Mechanics  (North Holland, Amsterdam, 1961), Ch. IX. 
  [13.5]  C. Cohen-Tannoudji, B. Diu, and Franck Laloë,  Quantum Mechanics , (John Wiley and 

Sons, New York, 1977), Sec. VII.B. 
  [13.6]  P.A. Tipler and R.A Llewellyn,  Modern Physics 5th ed . (W.H. Freeman, New York, 2008), 

Sec. 4.3. 
  [13.7]  P. Falstad,  Hydrogen Atom Applet ,  http://www.falstad.com/qmatom/ . 
  [13.8]  A.P. French and E.F. Taylor,  An Introduction to Quantum Physics  (W.W. Norton, New 

York, 1978), Ch 13. 

http://www.bpreid.com/poas.php
http://www.falstad.com/qmatom/


 326   •  Q U A N T U M  M E C H A N I C S

  [13.9]  M. Nauenberg, C. Stroud and J. Yeazell, “The classical limit of an atom,” Scientifi c American 
 270 , 44 (1994). 

         13.7  PROBLEMS    

           13.1     Assume that the box in example 13.1 is a cube:   x y zL L L L  . Find all of the 
allowed energies between 0 and   2 2 221 / 2mL  . What is the degeneracy of each 
of the energy levels?  

      13.2     Use separation of variables in  Cartesian  coordinates to solve the Schrödinger 
equation [eq. (13.7)] for a particle in a symmetric harmonic oscillator potential:

   2 2 2 2 2 21 1
2 2

V m r m x y zr   . (13.109) 

   Show that the allowed energies are 

    
3
2n n n x y zx y zE n n n  , , 0,1,2, . . .x y zn n n   . (13.110)  

      13.3     Show that 

    cos cos sinsin cos
sinx r r r

  , (13.111) 

    cos sin cossin sin
siny r r r

  , (13.112) 

   and 

    sincos
z r r

  , (13.113) 

   Hint: Use the chain rule in 3 dimensions.  
      13.4     Show that   , 1 ,ll l

mm m
l lY Y  .  

      13.5     Verify eq. (13.54).  
      13.6     Show that the orbital angular momentum operator can be represented as 

    ˆ iL r   , (13.114)  

      13.7*     Prove eqs. (13.57)–(13.59). [Hint: Use eqs. (13.111)–(13.113).]  
      13.8*     Verify that   2L̂   can be represented using eq. (13.60).  
      13.9     Show that the angular momentum operator can be represented as  

   1ˆ
sin

iL u u   (13.115) 

   Hint: The gradient operator is represented in spherical coordinates as 
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    1 1
sinr r r r

u u u   . (13.116)  

      13.10     Show that 

    1ˆrp i
r r

r r   , (13.117) 

   and hence that eq. (13.62) is correct. Hint: The divergence in spherical coordi-
nates is given by 

    2
2

1 sin sin
sin rr f r f r f

rr
f   . (13.118)  

      13.11*     Prove that eq. (13.24) can be derived from eq. (13.64), assuming a central 
potential.  

      13.12*     Express the raising operator   ̂L   in the position basis. Show that it can be used to 
generate   1 ,lm

lY   from   ,lm
lY  .  

      13.13*     Show that by substituting eq. (13.82) into eq. (13.74), one obtains eq. (13.83).  
      13.14*     Show that   Ĥ  for a central potential commutes with   2L̂   and   ̂ zL  . (Hint: Work in 

Cartesian coordinates, and begin by examining the commutator of   ̂ zL   with the 
components of   ̂r   and   p̂ .)  

      13.15     What is the shortest wavelength of light emitted by a hydrogen atom making a 
transition in the Lyman series?  

      13.16     What is the longest wavelength of light emitted by a hydrogen atom making a 
transition in the Paschen series?  

      13.17     Show that the maximum of the radial probability density for a hydrogen atom 
in a state with   1l n   is located at   2

0r n a  .  
      13.18*     What is the probability that an electron in a 2 p  state of a hydrogen atom will be 

found in the region   03r a  ?  
      13.19     What is the probability that an electron in the 3 s  state of a hydrogen atom will 

be found inside the nucleus? Take the nuclear radius to be   1510 m . (Hint: 
An excellent approximation is obtained by assuming that the nucleus is much 
smaller than the atom.)  

      13.20*     Find   r  ,   2r  ,   z  , and   2z   for an electron in the ground state of hydrogen.  
      13.21     At   0t   the state of a hydrogen atom is 

    10 1,0,0 2,1,0
2

  . (13.119) 

   Find   z t  .  
      13.22     For an electron in the ground state of hydrogen, fi nd the expectation value of the 

potential energy. What must the expectation value of the kinetic energy be?  
      13.23     Three particles (1,2,3) can be in each of the three states   1  ,   2  , or   3  . 

Determine the symmetric and antisymmetric wave function combinations for 
the particles. To fi nd the antisymmetric combination, you can use the use Slater 
determinant, which for  N  particles takes the form:
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1 1 1

1

1
!

N

a

NN N
N

  . (13.120)  

      13.24     Let   K   be the expectation value of the kinetic energy. The virial theorem tells 
us that for stationary (time independent) states, 

    2 K Vr r   . (13.121) 

   Apply the virial theorem to the hydrogen atom. [The gradient in spherical 
coordinates is given in eq. (13.116).] How do the kinetic and potential energies 
relate to the total energy for stationary states?   

   



         COMPLEMENT 13.A      

  Quantum Dots   

 In chap. 13 we described some of the properties of solutions to the Schrödinger equa-
tion for a central potential. Here we’ll discuss a specifi c example, that of the infi nite 
spherical well, for which the potential is zero inside a sphere of radius  R , and infi nite 
outside:

   
0 r R

V
r R

r   . (13.A.1) 

 Understanding the infi nite spherical well will help us to understand the behavior of 
quantum dots. Quantum dots are small structures, typically a few nm in diameter, and 
that are usually made from semiconducting materials. In sec. 11.5.4 we discussed quan-
tum wells, in which electrons and holes are confi ned in one dimension. Quantum dots 
are similar, only the confi nement is in all three dimensions, so we need a 3-D model to 
more fully understand them.   

   13.A.1    The Infinite Spherical Well   

 Inside the well the radial wave equation [eq. (13.30)] is 

    
2

2
2 2 2

11 2 0
2

l lmr R r E R r
r rr mr

  . (13.A.2) 

 The boundary conditions on this equation are:

   0R r r R  , (13.A.3) 

 and   R r   must be normalizable for   r R . 
 We can simplify eq. (13.A.2) by making the substitution 
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    2mEkr r  , (13.A.4) 

 which yields 

    
2

2 2

12 1 0
l l

R R R   . (13.A.5) 

 This is a well-known differential equation, and the normalizable solutions are given by 
the spherical Bessel functions:

   lR j   , (13.A.6) 

 where  l  is a nonnegative integer. These functions can be expressed using the Rayleigh 
formula:

   1 sin
l

l
l

dj
d

  , (13.A.7) 

 The fi rst few spherical Bessel functions are listed in table 13.A.1. For more information 
about the spherical Bessel functions, see ref.   [13.A.1]  .    

 To fi nd the allowed energies for a particle in the well, we need to satisfy the bound-
ary condition 

    0nl nl l nl l nlR k R j k R j   . (13.A.8) 

 Here we have defi ned the  n  th  zero of   lj   as   nl . As can be seen from table 13.A.1, the 
  lj  ’s are oscillatory functions, so each has an infi nite number of zeros. From the form 
of   0j  , we can see that its zeros are simply multiples of    . However, the zeros of the 
other spherical Bessel functions must be computed numerically. Some of the low-order 
zeros are given in table 13.A.2; for a more extensive table, see ref.   [13.A.2]  .    

 The equation for the allowed energies, from eqs. (13.A.4) and (13.A.8), is 

    
2 nl

nl nl
mE

k R R   . (13.A.9) 

 Solving for the energies, we fi nd 

    
2 2

22
nl

nlE
mR

  . (13.A.10) 

 Note that this looks similar to the equation for the energies of a one-dimensional 
infi nite square well [eq. (11.67)]. 

 The angular dependence of the wave functions is given by the spherical harmonics, 
as described in sec. 13.2, so the full wave functions are 

    , , ,l

l

mnl
l nlm nl l

r
n l m c j Y

R
r r /   . (13.A.11) 
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 The constants   nlc   are determined by the normalization integral 

   
22

22 2 2

0 0 0 0

sin 1
l

R R
nl

nlm nl
r

dr d d r c dr r j
R

r /   . (13.A.12) 

 The integral simplifi es in this manner because we know that the spherical harmonics 
are normalized [eq. (13.54)].    

   13.A.2    Semiconductors   

 As stated above, quantum dots are typically made from semiconducting materials, and 
confi ne electrons and holes in three dimensions. Before discussing how the confi ne-
ment affects the behavior of the dot, let’s talk briefl y about bulk solids. 

 What happens if we bring two atoms of the same type close enough together, so that 
the wave functions of their outer electrons start to overlap? When the atoms are far 
apart their energy level structures are identical. This means that the energy levels of the 
two-atom system are degenerate. As the wave functions of the atoms begin to overlap, 
the atoms become coupled to each other, and each of the degenerate energy levels split 
into two levels, with a small energy separation, as shown in  fi g.  13.A.1  .    

 If we bring  N  atoms together, each energy level splits into  N  levels. If  N  is large, as 
in a solid, there are so many closely spaced levels that each energy level becomes a 
“band” of allowed energies, as in fi g. 13.A.1. Each band extends over some range of 
energies, and any energy within the band is allowed. For this reason, when discussing 
solids we often refer to the band structure of the material. 

     Table 13.A.1     The spherical Bessel functions for   l   = 0 through   l   = 2.     

     
0

sin sincj
    

   
1 2

sin cosj
    

   
2 3 2

3 1 3sin cosj
    

     Table 13.A.2     The n th  zero of   lj  ,   nl  , for   n 1  through   n 3 , and   l 0  through    l   = 2  .           

     nl     n =1   n =2   n =3     

  l =0         2      3π    
  l =1  4.49  7.73  10.90   
  l =2  5.76  9.10  12.32   
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 The band structure tells us the allowed energy levels for the electrons, but in which 
levels do the electrons actually reside? As we saw in sec. 13.5, when discussing multi-
electron atoms, electrons fi ll the lowest energy states fi rst. In a bulk semiconductor at 
absolute zero, the low-lying states are fi lled with electrons, all the way to the top of 
what is called the valence band—the valence band is full. When electrons are in the 
fi lled valence band they are tightly bound to the individual atoms in the solid, and are 
not free to move. Because of this, a material with all of its electrons in the valence band 
won’t conduct electricity, and is an insulator. 

 The allowed band with the next highest energy is called the conduction band, and it 
is separated from the valence band by the band gap energy   gE  , as depicted in fi g. 13.A.1. 
If an electron acquires enough energy to move to the conduction band, it is no longer 
tightly bound. If suffi cient numbers of electrons are in the conduction band, the mate-
rial readily conducts electricity. Semiconductors are good insulators at low tempera-
ture, but their band gap is relatively small. Through an increase in temperature, or 
illumination by light, electrons absorb energy and move to the conduction band, which 
makes the material conducting (as happens in solar cells).   7    

 For the purposes of our discussion here, we are interested in the band structure of a 
semiconductor in order to understand what energy photons it will absorb and emit. 
Consider the optical process in which a valence-band electron is promoted to an avail-
able state in the conduction band through the absorption of a photon. The incident 
photon must have at least   gE   worth of energy in order to excite the electron from the 
valence band to the conduction band. During this process, the electron leaves behind an 
empty state in the valence band, which is called a hole. As described previously, a hole 
is a “lack of an electron,” and behaves in many ways as a mobile positive charge carrier. 

 The properties of electrons and holes in solids are strongly infl uenced by the proper-
ties of the bulk material. For example, electrons and holes have “effective masses” that 
we use to describe their behavior in a solid. We denote the effective masses of electrons 
and holes as   em   and   hm  , respectively. For much more information about solids, see, for 
example, ref. [13.A.3].    

    7.     It is also possible to dope impurities into semiconductors, which can make them more readily 
conducting.  

  

E1

E2

One Atom Two Atoms N Atoms

E
g

    

  Fig 13.A.1     The energy level structure that results when atoms are brought together. For two 
atoms, each energy level splits into two levels. For N atoms, the energy levels split into N 
closely spaced levels, which effectively form a band of allowed energies. The band gap energy 
  gE   is shown.   
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   13.A.3    Quantum Dots   

 Suppose that a semiconducting material is formed into a quantum dot, which we will 
treat as a sphere of radius  R . What would be the minimum energy needed to create an 
electron-hole pair in this dot? 

 First, we know that it needs to absorb at least   gE   of energy, because this is the energy 
needed to excite the electron into the conduction band, and to create an electron-hole 
pair. If this occurred in bulk material, not a quantum dot, this would be the whole story. 
However, for a quantum dot we also have to worry about the energy associated with the 
confi nement. For our model of the dot, the confi nement energy is given by eq. (13.A.10); 
since we’re interested in the lowest energy we’ll take the lowest allowed value of   nl , 
which is   nl  . We have two confi ned particles, the electron and the hole, and we 
need to account for the confi nement energy of each. The lowest energy of an electron-
hole pair in a quantum dot is thus 

    
2 2 2 2

2 22 2eh g
e h

E E
m R m R

  . (13.A.13) 

 Equation (13.A.13) is a reasonable fi rst approximation, but it is of course an approx-
imation. One thing it ignores is the energy of the Coulomb interaction between the 
electron and the hole. If the radius of the dot is small enough, the confi nement energy 
dominates the Coulomb energy of the electron and the hole, and the approximation 
improves. However, if the dot is too small there are not many atoms, and the value of 
  gE   for the dot is no longer well described by the value of the bulk material. 

 Quantum dots are technologically useful precisely because their energy levels can 
be controlled by varying their size, as described by eq. (13.A.13). Dots fabricated from 
the same material can be made to absorb or emit light at dramatically different wave-
lengths. For more information on the energy level structure of semiconductor quantum 
dots, see ref. [13.A.4].         
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         13.A.5  PROBLEMS    

           13.A.1     A collection of quantum dots is made from CdSe. Bulk CdSe has   1.75 eVgE  , 
  0.13e em m   and   0.45h em m  . What dot radius would be necessary to produce 
light with wavelengths of 610 nm and shorter?     



         COMPLEMENT 13.B      

  Series Solution 
to the Radial Equation   

 In sec. 13.4 we found solutions to the radial part of the Schrödinger equation for the 
hydrogen atom in terms of the associated Laguerre polynomials. Here we will show 
that it is possible to obtain these same solutions in terms of a power series. 

 We were able to write the radial wave functions as [eq. (13.82)] 

    / 2lR e w   , (13.B.1) 

 where the function   w   is a solution to eq. (13.83):

   
2

2 2 1 1 0w l w l w   . (13.B.2) 

 We’ll look for a power series solution to this equation, so we’ll write 

    
0

j
j

j

w c   . (13.B.3) 

 Substitute this into eq. (13.B.2), and we obtain 

        2 1

0 0 0

1 2 1 1 0j j j
j j j

j j j

c j j l c j l c   . (13.B.4) 

 Grouping together like powers of    , and noticing that some of the   0j   terms are 0, we 
can rewrite this as 

    1

1 0

1 2 1 1 0j j
j j

j j

c j j l c l j   . (13.B.5) 

 Making the substitution   1j j   yields:

   '
' 1

' 0 0

' 1 ' 2 1 1 0j j
j j

j j

c j j l c l j   . (13.B.6) 
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 Now making the substitution   j j , and combining the two series, gives 

    1
0

1 2 1 1 0j
j j

j

c j j l c l j   . (13.B.7) 

 In order for this equation to be true, every term in the series must be 0, which yields 
the recursion relation 

    1
1 1

1 2 1 1 2 1
j

j j
c l j j l

c c
j j l j j l

  . (13.B.8) 

 Given the coeffi cient   0c  , which is used for normalization, the higher-order coeffi cients 
are determined. 

 We need our solutions to be normalizable, so the series cannot diverge too rapidly as 
   . The large     behavior of the series is determined by the behavior of the coeffi -
cients   jc   in the limit of large  j . In the large  j  limit, we have 

    1
2

1j
j

j

c j
c jj

  . (13.B.9) 

 The power series representation of   e   is 

    
0 0

1
!

j j
j

j j

e b
j

  . (13.B.10) 

 and for this series we have 

    1 ! 1 1
1 ! 1

j
j

j

b j
b j j j

  , (13.B.11) 

 which behaves the same as eq. (13.B.9). Thus, the series of eq. (13.B.3), with coef-
fi cients given by eq. (13.B.8), will diverge as   e   in the limit of large    . This means that 
the radial wave functions   R   will diverge as   / 2e  , which is not normalizable, and 
hence is not allowed. 

 The only way to stop the series in eq. (13.B.3) from diverging is to truncate it at 
  maxj j  . To guarantee that the series truncates, it is necessary to have   1max 0jc  , 
which will then ensure that all higher terms will be 0 as well. From the recursion rela-
tion in eq. (13.B.8), we see that   1max 0jc   as long as   max 1j l  . In order for this 
to occur, it is necessary for     to be an integer, so we set   n . 

 Note that we have now reproduced results of sec. 13.4. Requiring that   n  be an 
integer yields the quantized energies of eq. (13.89). It also ensures that the series of 
eq. (13.B.3) truncates, so that the functions   w   are a set of polynomials of order 
  max 1j n l  . These polynomials, whose coeffi cients are given by eq. (13.B.8), are 
exactly the associated Laguerre polynomials described in sec. 13.4.      
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   13.B.1  PROBLEMS    

           13.B.1*      Solve the Schrödinger equation for a particle in a symmetric harmonic oscil-
lator potential, 

    2 21
2

V m rr   , (13.B.12) 

     using spherical coordinates. For the radial equation, factor out the limiting 
behaviors as   r   and   0r  , and then look for a series solution. Show that 
the energies are given by 

   32
2nlE n l , , 0,1,2,...n l   . (13.B.13) 

    (Hint: Use the dimensionless parameters   /m r  , and   2 /E  .)  
      13.B.2*      Show that the energies for the symmetric harmonic oscillator are the same 

for solutions in both spherical coordinates [eq. (13.B.13)] and Cartesian coor-
dinates [eq. (13.110)], as they must be. Show that the degeneracy of the fi rst 
three energy levels is the same for both spherical and Cartesian coordinates. 
(The degeneracy of all the levels must be the same.)                          



         CHAPTER 14 

Time-Independent Perturbation 
Theory  

    So far we have concentrated on fi nding exact solutions to problems. In order to do this 
we’ve had to simplify many of the problems to make them tractable. An example is the 
hydrogen atom. The solutions we obtained in chap. 13 are exact, assuming that the in-
teraction between electron and the nucleus is fully characterized by the Coulomb force. 
However, we’ve ignored several effects, such as those due to the spins of the electron 
and the nucleus. In this chapter we’ll use perturbation theory to look at how some of 
the things we’ve ignored modify the energy level structure of quantum systems, such 
as hydrogen. Perturbation theory is one technique for obtaining approximate solutions 
to more complicated problems. The idea is that we start with a problem for which we 
know the exact solutions, and then add a level of complication that modifi es them. 
Perturbation theory is valid if the perturbation is small enough, so that the solutions are 
largely unchanged. 

      14.1    NONDEGENERATE THEORY   

 We want to fi nd the energies and eigenstates of a Hamiltonian   Ĥ , which consists of the 
sum of two pieces:

  0
ˆ ˆ ˆ

pH H H  . (14.1)

The fi rst piece,   0Ĥ  , is a Hamiltonian for which we know the exact energies and 
 eigenstates:

  0 0 0
0

ˆ
n n nH E  . (14.2)

The superscript   0   indicates that these are the zeroth-order (unperturbed) energies and 
states. In this section we are considering nondegenerate perturbation theory, so each 
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energy   0
nE   corresponds to a unique eigenstate   0

n  . The second piece of the Ham-

iltonian,   ˆ pH  , is called the perturbing Hamiltonian. It changes the energies and states 
from their unperturbed values, and the goal of perturbation theory is to determine how. 

 We’ll start by slightly modifying the Hamiltonian of eq. (14.1), so that it becomes

  0
ˆ ˆ ˆ

pH H H  . (14.3)

Here     is a dimensionless parameter, which can take on values between 0 and 1. There 
are two uses for    . The fi rst is that it allows us to change the strength of the perturba-
tion. By setting     equal to 0 we return to our original problem, while setting it equal to 
1 yields and the full problem we’re interested in. For values of     between 0 and 1, we 
transition smoothly from one extreme to the other. The second use of     is as a book-
keeping parameter; it allows us to keep track of the orders of perturbation, as we’ll see. 

 The ultimate goal is to fi nd the full energies and eigenstates of   Ĥ :

  ˆ n n nH E  . (14.4)

Write these energies and eigenstates as a power series in    :

  0 1 22
n n n nE E E E  , (14.5)

  0 1 22
n n n n  . (14.6)

The terms beyond the zeroth-order solutions are the corrections to the energies and 
wave functions we’re looking for. If we set   0  in eqs. (14.3), (14.5), and (14.6), then 
the eigenvalue problem of eq. (14.4) reduces to the unperturbed eigenvalue problem of 
eq. (14.2), as it should. If     is small enough, the power series in eqs. (14.5) and (14.6) 
will converge. However, to ensure the validity of perturbation theory we would like 
these series to converge for   1 , and this will only happen if higher-order corrections 
get successively smaller. 

 If we substitute eqs. (14.3), (14.5), and (14.6) into eq. (14.4) we obtain

  

0 1 22
0

0 1 2 0 1 22 2

ˆ ˆ

.

p n n n

n n n n n n

H H

E E E
  (14.7)

Collecting together terms with like powers of     yields

  

0 1 0 2 12
0 0 0

0 0 0 1 1 0

0 2 1 1 2 02

ˆ ˆ ˆ ˆ ˆ

....

n n p n n p n

n n n n n n

n n n n n n

H H H H H

E E E

E E E

  (14.8)
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In order for this equation to hold for an arbitrary value of    , terms of like powers of     
on opposite sides of the equal sign must be equal. The zeroth-order terms, proportional 
to   0 , yield eq. (14.2), which involves only the unperturbed energies and states. 

 The fi rst-order terms in eq. (14.8) yield

  1 0 0 1 1 0
0

ˆ ˆ
n p n n n n nH H E E  , (14.9)

and the second-order terms yield

  2 1 0 2 1 1 2 0
0

ˆ ˆ
n p n n n n n n nH H E E E  . (14.10)

It is possible to collect higher-order terms, but in practice perturbation theory is usu-
ally not the best approach to solving a problem if terms higher than second-order are 
needed. Now that we’ve identifi ed the orders of perturbation, we no longer have need 
of the parameter    , and can set it equal to 1.   

   14.1.1    First-Order Corrections   

 If we project   0
n   onto eq. (14.9), we obtain

  

0 1 0 0 0 0 1 0 1 0
0

0 0 1 0 0 0 0 1 1

ˆ ˆ ,

ˆ ,

n n n p n n n n n n n

n n n n p n n n n n

H H E E

E H E E
  (14.11)

where we’ve used the fact that   0Ĥ   is Hermitian. The fi rst terms on either side of the 
equal sign cancel, and we fi nd

  1 0 0ˆ
n n p nE H  . (14.12)

This is a straightforward result—the fi rst-order correction to the energy is given by the 
expectation value of the perturbing Hamiltonian, using the unperturbed state. Since   1

nE   
is the fi rst-order correction, the total energy is   0 1

n n nE E E  . 
 Now we’d like to fi nd the fi rst-order correction to the state,   1

n  . The unperturbed 
states form a complete set, so we can write the fi rst-order correction as a linear combi-
nation of the unperturbed states:

  1 1 0
n mn m

m

c  . (14.13)

Note, however, that our ultimate goal is to fi nd the eigenstates   n   of the full Ham-
iltonian   Ĥ . These states are given by the expansion of eq. (14.6) (with   1 ), which 

already contains   0
n  . Thus, there is no need to include this   0

n   contribution in the 

expansion of eq. (14.13). By assuming that   0 1 0n n  , the expansion for   1
n   

becomes
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1 1 0

n mn m
m n

c  . (14.14)

The coeffi cients in this expansion are given by 

 1 0 1
mn m nc  . (14.15) 

 Applying   0
m  , with   m n , to eq. (14.9) yields

  0 1 0 0 0 0 1 0 1 0
0

ˆ ˆ
m n m p n m n n m n nH H E E  . (14.16)

The unperturbed states are orthogonal, so the last term is 0, and this reduces to

  0 0 1 0 0 0 0 1ˆ
m m n m p n n m nE H E  . (14.17)

Rearranging, we fi nd that

  

0 0
1 0 1

0 0

ˆ
m p n

mn m n
n m

H
c

E E
 . (14.18)

We are assuming nondegenerate states, so no two of the energies are the same, and we 
don’t need to worry about the denominator in this equation being zero. Substituting the 
coeffi cients of eq. (14.18) into the expansion of eq. (14.14) yields the fi rst-order cor-
rection to the state:

  

0 0
1 0

0 0

ˆ
m p n

n m
m n n m

H

E E
 . (14.19)

Let’s do an example, to better see how all this works. 

 EXAMPLE 14.1 
 A uniform electric fi eld   xEuEE   is applied to a particle with a charge of  q  that is situ-
ated in an infi nite potential well. The potential energy is given by

  
0q x x L

V x
elsewhere

E
 , (14.20)

and is depicted in  fi g.  14.1  . To fi rst-order, determine the allowed energies of this 
particle.    

 The unperturbed energies and wave functions are those of the infi nite potential well 
[eqs. (11.67) and (11.70)]:

  
2 2 2

0
22n

nE
mL

 1, 2,3, . . .n  , (14.21)

  0
2 sin 0

0
n

n x x L
x L L

elsewhere
 . (14.22)
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The perturbing Hamiltonian is
  ˆ ˆ ˆpH x q xE  . (14.23)

The fi rst-order correction to the energy is given by eq. (14.12):

  

1 0 0

2

0

ˆ

2 sin

.
2

n n p n

L

E H

ndx x q x
L L

q L

E

E

  (14.24)

Since this is a constant, all of the energy levels are shifted by the same amount. To fi rst 
order, the total energies are

  
2 2 2

2 22n
n q LE

mL
E  1, 2,3, . . .n   . (14.25)

Given the form of the potential shown in  fi g.  14.1  , it’s not surprising that the energies 
decrease for a positive charge .    

   14.1.2    Second-Order Corrections   

 To obtain the second-order corrections to the energy, we project   0
n   onto eq. (14.10), 

yielding

  0 0 2 0 1 0 0 2 1 0 1 2ˆ
n n n n p n n n n n n n nE H E E E  . (14.26)

Canceling like terms, using   0 1 0n n  , and solving for   2
nE   leaves us with

  

V (x)

x

L

    

  Fig 14.1     The potential energy of a charged particle in an infi nite well with an applied electric 
fi eld.   
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2 0 1

0 0
0 0

0 0

2
0 0

0 0

ˆ

ˆ
ˆ

ˆ
,

n n p n

m p n
n p m

m n n m

m p n

m n n m

E H

H
H

E E

H

E E

  (14.27)

where we have used the fi rst-order corrections to the states, eq. (14.19). In principle we 
could continue on and obtain the second-order corrections to the states, but in practice 
this is not often useful.   1    

 EXAMPLE 14.2 
 A uniform electric fi eld   xEuEE   is applied to a particle with a charge of  q  that is situ-
ated in a harmonic oscillator potential. Determine the energies of the particle to second 
order, and the energy eigenstates to fi rst order. 

 Before doing any calculations, let’s think about the physics of the problem. The 
potential energy with the applied fi eld is given by

  2 21
2

V x m x q xE  . (14.28)

The unperturbed and the perturbed potential energies are plotted in  fi g.  14.2  . The shape 
of the potential is not changed, but the perturbation shifts the minimum of the potential 
in space by   2/q mE  , and shifts it in energy by   2 2 2/ 2q mE  . Thus, we anticipate that 
the energies will be shifted by   2 2 2/ 2q mE  , and the wave functions will be shifted in 
space by   2/q mE  . (An exact solution bears this out.)    

 For the perturbation solution, the perturbing Hamiltonian is   ˆ ˆpH x q xE  . The 
eigenstates of the unperturbed Hamiltonian are the Fock states   n  , and their energies 
are [eq. (12.24)]

  0 1 0,1,2,...
2nE n n  . (14.29)

The matrix elements of the perturbing Hamiltonian are

  

0 0

†

1 1

ˆ ˆ

ˆ ˆ
2

1 1 1
2

1 ,
2

j p n

j n j n

H q j x n

q j a a n
m

q n j n n j n
m

q n n
m

E

E

E

E

  (14.30)

   1.     We said above that for perturbation theory to work, the perturbation must be small, but how small is 
small? From eqs. (14.19) and (14.27) it’s apparent that the matrix elements of the perturbing Hamiltonian 
must be smaller than the energy differences of the corresponding states. 
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where we’ve used eqs. (12.28)–(12.30). The fi rst-order corrections to the energies are 
given by the diagonal matrix elements,

  0 0 0ˆ 0n n p nE H  . (14.31)

Thus, to fi rst-order, there is no change in the energies. The second-order correction to 
the energies is given by eq. (14.27):

  

2
0 0

2
00

2
2 2 1 1

00

2 2

0 00 0
1 1

2 2

2 2

2

ˆ

1

2

1
2

1
2

.
2

j p n

n
j n n j

j n j n

j n n j

n nn n

H
E

E E

n nq
m E E

q n n
m E E E E

q n n
m

q
m

E

E

E

E

  (14.32)

We see that the second-order correction to the energy yields the anticipated energy 
shift. 

 The fi rst-order correction to the states is given by eq. (14.19):

  

V(x)

x

    

  Fig 14.2     When a uniform electric fi eld is applied to a charged particle in a harmonic oscillator 
potential, the potential minimum shifts.   
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0 0
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1 1 0
00

0 0
1 10 00 0

1 1

3

ˆ

1

2

1
2

1 1 1 1 .
2

j p n

n j
j n n j

j n j n
j

j n n j

n n
n nn n

H

E E

n n
q

m E E

n nq
m E E E E

q n n n n
m

E

E

E

  (14.33)

To fi rst order, the perturbation couples states of adjacent energies. It’s not obvious that 
this correction is consistent with a shift in the position of the wave functions, but you’ll 
show that this is indeed the case in problem 14.6.      

   14.2    DEGENERATE THEORY   

 In the previous section we assumed nondegenerate energies. However, by examining 
eqs. (14.19) and (14.27) we see that degenerate energies would lead to 0’s in the de-
nominator, which could be a problem. We need to go back and reexamine what we’ve 
done, in order to allow for degeneracy. As we’ll see below, perturbations tend to split 
energy levels; states that were degenerate no longer are. In other words, the energy 
corrections are not unique. States of the same unperturbed energies will not in general 
have the same energy corrections. 

 Assume that the energy   0
nE   is  N -fold degenerate, and the corresponding eigenstates 

are   0
,n j  , where   1, ,j N . Degenerate eigenstates all share the same energy, which 

means that any linear combination of degenerate eigenstates will also have the same 
energy. Thus, for a particular linear combination it is the case that

  0 00
0 , , , ,

1 1

ˆ
N N

n j n j n n j n j
j j

H b E b  . (14.34)

The linear combination is specifi ed by the coeffi cients   ,n jb  , which form an  N -dimen-
sional vector   nb  . Comparing eq. (14.34) to eq. (14.2), we see that we have made the 
substitution

  00
, ,

1

N

n n j n j
j

b  . (14.35)

Applying this substitution to eq. (14.9), and then operating on the resulting equation 

with   0
,n i  , yields

  

0 0 01
, 0 , , ,

1

0 0 00 1 1
, , , ,

1

ˆ ˆ

.

N

n i n n i p n j n j
j

N

n i n n n i n n j n j
j

H H b

E E b
  (14.36)
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The fi rst terms cancel, and we’re left with

  0 0 1
, , , ,

1

ˆ ,
N

n j n i p n j n n i
j

b H E b   (14.37)

where we’ve used the orthogonality of the eigenstates. Let’s defi ne the matrix elements 
of   ˆ pH  , in the  N -dimensional subspace of the degenerate states, to be

  0 0
, ,

ˆ
p ij n i p n jH H  . (14.38)

Using this, we can rewrite eq. (14.37) as

  1
, ,

1

N

p ij n j n n i
j

H b E b  . (14.39)

Comparing this to eq. (1.41), we fi nd that the sum is equivalent to a matrix multiplying 
a vector, so we can rewrite it as

  1
p n n nEH b b  . (14.40) 

 Equation (14.40) is an eigenvalue equation within the subspace of degenerate states, 
and the eigenvalues are the fi rst-order corrections to the energy. Thus, the procedure for 
fi nding the energy corrections and proper eigenstates for perturbations of an energy 
level with an  N -fold degeneracy are as follows: 
   
       1.     Create the   N N  -matrix   pH  , whose matrix elements are found using the degenerate 

eigenstates   0
,n j   [Eq. (14.38)].  

      2.     The eigenvalues of   pH   yield the fi rst-order corrections to the energy   1
nE  .  

      3.     The corresponding eigenvectors   nb   tell us which linear combinations of the degener-
ate, unperturbed eigenstates correspond to which fi rst-order energy corrections.   

   
 This may sound confusing, but it’s actually straightforward, as the following example 
will show. 

 EXAMPLE 14.3 
 A particle in a cubic box (example 13.1) with sides of length  L  is subjected to a per-
turbing potential of the form   pH xyr  , where     is a positive constant. This cor-
responds to a force which tends to push the particle toward the  z -axis. To fi rst order, 
calculate the effects of this perturbation on the ground state and fi rst-excited state 
energies. 

 The unperturbed states for the 3-D box are   , ,x y zn n n  . The energies are [eq. (13.17)]

  
2 2

0 2 2 2
22 x y zn n nx y z

E n n n
mL

 , , 1, 2,3, . . .x y zn n n   , (14.41)

and inside the box the wave functions are [eq. (13.18)]
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0

3
8 sin sin sin .

n n nn n n x y zx y z

yx z

X x Y y Z z

nn nx y z
L L LL

r

  (14.42)

The wave functions are 0 outside the box. The ground state   1,1,1   is nondegenerate, so 
we can use eq. (14.12) to calculate its fi rst-order energy correction:

  

1
111

1 1 1 1 1 1
0 0 0

2 2
2

0 0
2

ˆ1,1,1 1,1,1

4 sin sin

.
4

p

L L L

L L

E H

dxdydzX x Y y Z z xyX x Y y Z z

dx x x dy y y
L LL

L

  (14.43)

The integral over  z  is 1, since it is just the normalization integral for   1Z z  . We see that 
the energy of the ground state is increased. 

 The fi rst excited state is 3-fold degenerate, so to fi nd the fi rst-order energy correc-
tions, and corresponding eigenstates, we need to diagonalize the matrix

   

ˆ ˆ ˆ2,1,1 2,1,1 2,1,1 1,2,1 2,1,1 1,1, 2
ˆ ˆ ˆ1,2,1 2,1,1 1, 2,1 1,2,1 1,2,1 1,1, 2
ˆ ˆ ˆ1,1,2 2,1,1 1,1, 2 1,2,1 1,1,2 1,1, 2

p p p

p p p p

p p p

H H H

H H H

H H H

H  . (14.44)

The matrix elements are given by

  
0 0 0

0 0

ˆ, , , ,

.

x y z p x y z

L L L

n n n n n nx y z x y z

L L

n n n n n nx x y y z z

n n n H n n n

dxdydzX x Y y Z z xyX x Y y Z z

dxX x xX x dyY y yY y

  (14.45)

These matrix elements are 0 if   z zn n  , so the matrix simplifi es to

  

ˆ ˆ2,1,1 2,1,1 2,1,1 1,2,1 0
ˆ ˆ1,2,1 2,1,1 1, 2,1 1,2,1 0

ˆ0 0 1,1,2 1,1, 2

p p

p p p

p

H H

H H

H

H  . (14.46)

We can immediately see that the state   1,1,2   is an eigenstate of this matrix, with ei-
genvalue   ˆ1,1, 2 1,1, 2pH  . The integral for   ˆ1,1, 2 1,1, 2pH   takes on exactly the 
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same form as the integral for   ˆ1,1,1 1,1,1pH   [Eq. (14.43)], so the fi rst-order energy 
 correction for the state   1,1,2   is

  
2

1
112

ˆ1,1,2 1,1, 2
4p
LE H  . (14.47) 

 Our problem is now reduced to diagonalizing the matrix

  
ˆ ˆ2,1,1 2,1,1 2,1,1 1,2,1
ˆ ˆ1,2,1 2,1,1 1, 2,1 1,2,1

p p
p

p p

H H

H H
H  . (14.48)

In eq. (14.45) for the matrix elements, the  x - and  y -integrals have the same form, which is

  

0 0

1

22 2 2

2 sin sin

2

4 1 1
.

L L
x x

n nx x

x x

n nx x
x x

x x

x x

n n
dxX x xX x dx x x x

L L L

L n n

Ln n
n n

n n

  (14.49)

Using this, we fi nd that the diagonal matrix elements are

  
2

ˆ ˆ2,1,1 2,1,1 1,2,1 1, 2,1
4p p
LH H  , (14.50)

and the off-diagonal elements are

  
2 2

2 4
16 256ˆ ˆ2,1,1 1,2,1 1,2,1 2,1,1
9 81p p

L LH H  . (14.51)

The perturbation matrix is thus

  
2 4

4

10241
81

10244 1
81

p
LH  . (14.52)

The fi nal two fi rst-order energy corrections are the eigenvalues of this matrix, which 
you can show to be

  
2

1
4

10241
4 81
LE  . (14.53)

The corresponding eigenstates are

  1 1 2,1,1 1, 2,1
2

  . (14.54)

Figure  14.3   shows the resulting energies, and we see that the perturbation splits the 
fi rst-excited state into three distinct energy levels.     
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 Equation (14.40) asks us to fi nd the eigenvalues and eigenstates of the perturbing 

Hamiltonian   ˆ pH  , in the subspace of fi xed  n  (the states   0
,n j   form a basis for this sub-

space). Our job is simplifi ed greatly if we already know what the eigenstates in this 
subspace are. Under what circumstances might we know them? Suppose that   Â  corre-
sponds to an observable, and it commutes with   0Ĥ   and   ˆ pH  . Furthermore, suppose that 
that the states   0

,n j   are nondegenerate eigenstates of   Â . In problem 14.22 you’ll prove 
that these states are the correct eigenstates of   ˆ pH   to use in perturbation theory [they are 
the solutions to Eq. (14.40)]. We can calculate the fi rst-order energy corrections using 
nondegenerate perturbation theory [eq. (14.12)], as long as we use these eigenstates. 
We’ll soon see that this simplifi cation (looking for an observable whose corresponding 
operator commutes with   0Ĥ   and   ˆ pH  , and whose eigenstates are nondegenerate in the 
subspace of fi xed  n ) is very useful.   2       

   14.3    FINE STRUCTURE OF HYDROGEN   

 In chapter 13 we assumed that the potential energy of the interaction between the pro-
ton and the electron in a hydrogen atom was described completely by the Coulomb 
potential. In reality the potential has other terms, but they are small in comparison, 
so we can treat them as perturbations. In this section we will examine some of these 
corrections to the energy of a hydrogen atom. We’ll look at three perturbations, all of 
which are relativistic in nature, and all of which have energy corrections on the same 
scale. Taken together, these corrections constitute what is known as the fi ne structure 
of hydrogen.   

      

  Fig 14.3     Splitting of the three-fold degenerate, fi rst-excited state of a particle in a box (not to 
scale). The states corresponding to the perturbed energy levels are indicated.   

    2.     If a single observable is insuffi cient to fi nd nondegenerate eigenstates, one can look for multiple ob-
servables whose simultaneous eigenstates are nondegenerate. 
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   14.3.1    Relativistic Kinetic Energy   

 The relativistic kinetic energy of a particle is given by

  
1/ 22 2

2 4 2 2 2 2 2
2 41 p cK m c p c mc mc mc

m c
 . (14.55)

If the kinetic energy is much less than the rest energy, the particle is nonrelativistic, and 
we can use the binomial expansion to approximate the kinetic energy as

  
2 4

3 22 8
p pK
m m c

 . (14.56)

The fi rst term is the Newtonian kinetic energy that we use in our unperturbed Ham-
iltonian,   0Ĥ  . The second term is the relativistic correction, which is the perturbing 
Hamiltonian:

   
24 2

3 2 2
ˆ ˆ1ˆ

28 2R
p pH

mm c mc
 . (14.57)

Here we’ve written the perturbing Hamiltonian in terms of the nonrelativistic kinetic 
energy, for reasons that will soon become apparent. For hydrogen it is the electron that 
is moving, so the appropriate mass is the electron mass:   em m  . 

 Calculating the fi rst-order energy corrections involves computing expectation val-
ues of   ˆ RH  , using the unperturbed states of the hydrogen atom   , , ln l m  . Apart from the 
ground state the energies of these states are degenerate, so we need to use degenerate 
perturbation theory. However, here’s where the simplifi cation described at the end of 
sec. 14.2 applies, and we can avoid diagonalizing any matrices. 

 We know that   2L̂   and   ̂ zL   commute with   0Ĥ  . As part of problem 13.14 you showed 
that   2 ˆˆ , 0p L  ; from this it follows that   4 ˆˆ , 0p L  , and hence   ˆ RH   commutes with   2L̂   

and   ̂ zL  . Thus, as described at the end of sec. 14.2, we’ve found operators,   2L̂   and   ̂ zL  , that 
commute with   0Ĥ   and   ˆ RH  . Within the subspace of fi xed  n  their eigenstates   , , ln l m   are 
nondegenerate, so there’s no need to diagonalize the perturbation Hamiltonian. We can 
use nondegenerate perturbation theory to calculate the fi rst-order energy corrections [eq. 
(14.12)], as long as we calculate the expectation values of   ˆ RH   using the states   , , ln l m  . 

 Note from eq. (14.57) that we need to calculate expectation values of   4p̂  , which 
turns out to be diffi cult. However, there’s a trick that makes this task easier. Recall the 
original, unperturbed, Hamiltonian for a three-dimensional system [eq. (13.1)]; rear-
ranging that equation, we fi nd that

   
2

0
ˆ ˆ ˆ

2
p H V
m

r  . (14.58)

Substituting this into eq. (14.57), we can rewrite the perturbing Hamiltonian as

   2 2
0 0 02

1ˆ ˆ ˆ ˆˆ ˆ ˆ
2RH H H V V H V

mc
r r r  . (14.59)
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Here   ˆV r   is given by the Coulomb potential [eq. (13.71)], so the fi rst-order, relativis-
tic kinetic energy corrections are then

   

1

220 0
2

0

22

2
0

ˆ, , , ,

1 12 , , , ,
ˆ42

1, , , , .
4 ˆ

l R lR

n n l l

l l

E n l m H n l m

eE E n l m n l m
rmc

e n l m n l m
r

  (14.60) 

 There are a few different techniques for calculating the expectation values that we 
need. The virial theorem can be used to calculate   1r̂   [problem 14.8], and   1r̂   and 

  2r̂   can be calculated directly by integration [problem 14.9]. Finally, there are some 

tricks that use the fact that the radial part of the unperturbed Hamiltonian contains both 
  1r   and   2r   terms [see eq. (13.72)].   3    By whichever means they are calculated, these 
expectation values are

   2
0

1 1
r̂ n a

 , (14.61)

and

   2 3 2
0

1 1
ˆ 1/ 2r n a l

 , (14.62)

where   0a   is the Bohr radius. Substituting these expressions into eq. (14.60), and doing 
some algebra, we fi nd the fi rst-order energy corrections to be

   

20
1

2
4 3
1/ 22

n
R

E nE
lmc

 . (14.63)

This energy correction depends on the orbital angular momentum quantum number  l , 
so the relativistic correction at least partially breaks the degeneracy of the energy level 
structure of hydrogen. 

 The fi ne-structure constant     is defi ned as

   
2

0

1
4 137

e
c

 . (14.64)

In terms of    , the unperturbed hydrogen energies can be expressed as

   
2 2

0
22n

mcE
n

 , (14.65)

and the relativistic corrections are

    3.     See sec. 17.3 of ref. [14.1] for more details. 
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2 4

1
4

4 3
1/ 28R

mc nE
ln

 . (14.66)

Comparing these last two equations, we see that the relativistic corrections are smaller 
than the unperturbed energies by a factor of approximately   2 , validating our use of 
perturbation theory.    

   14.3.2    The Spin-Orbit Interaction   

 Previously we have ignored the spin of the electron in the calculation of the hydrogen 
energy spectrum, but now it’s time to include it. Because of its spin, the electron has an 
intrinsic magnetic dipole moment   e e S  [eq. (6.4)], where   e  is the gyromagnetic 
ratio of the electron. The gyromagnetic ratio can be written as (problem 6.2)

   
2 2
e e e

e
g q g e

m m
  , (14.67)

where   eg   is the  g  factor of the electron. 
 In its own rest frame, the electron sees the proton moving about it. This moving 

charge creates a magnetic fi eld in the rest frame of the electron, which interacts with the 
electron’s magnetic moment. To calculate the strength of this fi eld, treat the proton as 
moving in a circle of radius  r . We know that a current loop produces a magnetic fi eld at 
its center with a magnitude of

   0
2

02 2
I I

r c r
B   , (14.68)

where   0  is the permeability of free space (  2
0 0 1/ c  ). The effective current of a 

proton with an orbital period of  T  is   /I e T  , so the magnitude of the fi eld strength is

   
2 2 2 2

0 0 02 2 2 / 4
e e ev

c rT c r r v c r
B  , (14.69)

with  v  being the speed of the proton. 
 Switching to the rest frame of the proton, the proton and the electron must agree on 

their relative speeds, so we know that  v  is also the speed of the electron about the proton. 
The speed is related to the magnitude of the angular momentum of the electron by 
  /v L mr  . Finally, a little thought shows that the magnetic fi eld experienced by the 
electron is parallel to the angular momentum of the electron (if the proton moves clock-
wise about the electron, the electron also moves clockwise about the proton), so we have

   2 3
04
e
mc r

LB  . (14.70)

The potential energy of interaction between the fi eld and the dipole moment of the 
electron is then given by

   
2

2 2 3
08

eg e
V

m c r
S LB  . (14.71) 
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 This simple calculation is nearly in agreement with the full relativistic calculation. 
The problem is that the electron is in an accelerated reference frame, which causes a 
precession of its magnetic moment, known as the Thomas precession. The correct 
result subtracts 1 from   eg   (see ref. [14.2]), so the Hamiltonian turns out to be

   
2 2

2 2 3 2 2 3
0 0

1 ˆ ˆˆ ˆ ˆ
8 8

e
SO

g e eH
m c r m c r

S L S L , (14.72)

where we’ve used the fact that   2eg  .   4    The subscript on   ˆ SOH   refers to the fact that it 
is known as the spin-orbit Hamiltonian, because it couples the spin and orbital angular 
momenta of the electron. 

 The total angular momentum is given by   ˆˆ ˆJ S + L  (sec. 7.2), and since   Ŝ  and   L̂  
commute, we can write

   2 2 2ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ2J S LJ J S + L S + L S L   . (14.73)

Solving for the dot product, and substituting into eq. (14.72), we fi nd that the spin-orbit 
Hamiltonian can be written as

   
2

2 2 2
2 2 3

0

ˆˆ ˆ ˆ
16SO

eH J L S
m c r

  . (14.74) 

 The operators   2Ĵ  ,   2L̂   and   2Ŝ   all commute, and eq. (14.74) tells us that their simulta-
neous eigenstates are also eigenstates of   ˆ SOH  . Another operator that commutes with   0Ĥ   
and   ˆ SOH   is   ̂ zJ   (problem 14.11), and   ̂ zJ   also commutes with   2Ĵ  ,   2L̂   and   2Ŝ  . Within a 
subspace of fi xed  n , the simultaneous eigenstates of the operators   2Ĵ  ,   2L̂  ,   2Ŝ   and   ̂ zJ   are 
nondegenerate. Since these operators all commute with   ˆ SOH  , their eigenstates 

, , , jj l s m    (for fi xed  n ) are also eigenstates of   ˆ SOH  ; we can use these states to calculate 
the fi rst-order energy corrections for the spin-orbit interaction, without resorting to 
matrix diagonalization. For fi xed values of  l  and  s , the allowed values for  j  are

   , 1, ,j l s l s l s   . (14.75)

Since   1/ 2s  , the allowed values for  j  are   1/ 2j l   and   1/ 2j l  ; this second value 
is not allowed if   0l  . As before, the allowed values for   jm   are

   , 1, 2,..., 2, 1,jm j j j j j j  . (14.76) 

 Before calculating the energy corrections, a few comments about angular momentum 
are in order.   ̂ zL   and   ̂ zS   commute with each other, and   0Ĥ  , so in the absence of the spin-
orbit interaction we can sensibly talk about defi nite values for the  z -components of both 
orbital and spin angular momentum. However,   ̂ zL   and ˆ

zS    do not commute with ˆ
SOH   , so 

in the presence of the spin-orbit interaction it does not make sense to talk about defi nite 
values for their expectation values. The  z -components of orbital and spin angular 

    4.     Relativistic quantum mechanics predicts   = 2
e

g  , but quantum fi eld theory adds corrections (on the 
order of 0.1%) to this. 
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momentum are no longer separately conserved, because they do not commute with the 
full Hamiltonian (see sec. 9.3). The  z- component of the total angular momentum,   zJ  , is 
conserved, because   ̂ zJ   commutes with   0Ĥ   and   ˆ SOH  . 

 To fi nd the fi rst-order energy corrections, we calculate the expectation value of eq. 
(14.74) using the states   , , , jj l s m  , in the subspace of fi xed  n . The result is

   
2 2

1
2 2 3

0

11 1 1
16SO

eE j j l l s s
m c r

  . (14.77)

In problem 14.12 you’ll show that

   
3 3 3

0

1 1
1 1/ 2r a n l l l

  . (14.78)

Combining the last two equations, and doing some algebra, yields

   
2 4

1
3

1 1 3/ 4
4 1 1/ 2SO

j j l lmcE
n l l l

  , (14.79)

where we have used the fact that for an electron  1/ 2s  . 
 There turns out to be a problem with eq. (14.79), however, for the case of   0l  . 

From the Hamiltonian of eq. (14.72), it is apparent that if the orbital angular momen-

tum is 0, there should be no spin-orbit coupling, and we should have   1 0SOE  . How-

ever, you’ll show in problem 14.13 that eq. (14.79) predicts a nonzero 1
SOE    for   0l  . 

What’s going on? If   0l  , then we must have j s  , so eq. (14.77) predicts   1 0SOE  , as 
long as   3r   is fi nite. However, eq. (14.78) says that   3r   diverges for   0l  . Luckily, 
the Dirac equation for the hydrogen atom can be solved exactly [see eq. (14.88) below], 
which gives us the exact relativistic energies. The low-energy limit of this solution tells 
us that the correct answer is   1 0SOE   for   0l  . Our fi nal answer for the fi rst-order 
energy corrections, due to the spin-orbit interaction, is thus

   1 2 4

3

0 0

1 1 3/ 4
0

4 1 1/ 2
SO

l

j j l lE mc l
n l l l

  . (14.80)    

   14.3.3    The Darwin Term   

 In relativistic quantum mechanics a particle cannot be localized to a length scale smaller 
than its Compton wavelength,   /c mc . Accounting for this, the Coulomb potential 
energy of the electron is not just   V r  , but has contributions from points within a vol-
ume of approximately 3

c   about   r . To see what effect this has, expand   V r r   (the po-
tential at r r   , which is near to   r ) in a Taylor series about   r . Letting   1x r  , etc., we fi nd

   
3 3 2

1 , 1

1
2i i j

i i ji i j

V VV V r r r
r r r

r r r   . (14.81)
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Note that the derivatives in parentheses must be evaluated at   r , and are thus constants. 
 If we average   V r r   over a sphere of radius   c , centered on   r , we fi nd (see prob-

lem 14.14)

   

2 2

2
2

2 2

1 1
2 5

.
10

cV V V

V V
m c

r r r r

r r

  (14.82)

The fi rst term is just the Coulomb potential energy, and the second is the correction due 
to the unlocalized nature of the electron. 

 Here we have motivated the existence of a correction which accounts for the elec-
tron being unlocalized over length scales of its Compton wavelength. To get the correct 
answer, however, one must perform an expansion of the Dirac equation (see ref. [14.1], 
sec. 20.2). This results in a correction to the Coulomb Hamiltonian known as the Dar-
win term. The Darwin Hamiltonian is

   
2

2
2 28DH V

m c
r   , (14.83)

which is remarkably close to the correction we obtained in eq. (14.82). Using the Cou-
lomb potential energy, we fi nd that

   
2 2 2 2

2 3
2 2 2 2

0 0

1
48 8D

e eH
rm c m c

r   . (14.84)

Here we’ve used the fact that   2 1 34r r  , where   3 r   is the delta function 
in three dimensions [14.3]. 

 The energy corrections due to the Darwin term are computed by evaluating the 
expectation value of   DH   with the unperturbed states   , , ln l m   (there’s no spin depend-
ence in   DH  ). We can calculate this expectation value using integration, which yields

   
2 2 21
2 2

0

ˆ 0
8 lD nlmD

eE H
m c

  . (14.85)

Here the   0
lnlm  ’s are the unperturbed hydrogen wave functions, evaluated at the 

origin. The only wave functions that are not 0 at the origin are the   0l   wave functions, 
and you’ll show in problem 14.15 that eq. (14.85) can be rewritten as

   

2 4

1 3 0
2
0 0

D

mc lE n
l

  . (14.86)    

   14.3.4    Complete Fine Structure   

 The magnitudes of the three corrections discussed above are comparable, and the com-
plete fi rst-order, fi ne-structure energy corrections are given by the sum of the individual 
energy corrections. You’ll show in problem 14.16 that the fi nal expression for the energies 
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of the hydrogen atom, including fi ne structure, is

   
2

10 0
2

31
1/ 2 4nj n nF
nE E E E

jn
  . (14.87) 

 Although the relativistic and spin-orbit corrections depend on  l , the total energies 
depend only on  j  (not on  l  directly). For each value of the quantum number  n , there are 
 n  allowed values for  j , so each of the unperturbed hydrogen levels splits into  n  levels 
when fi ne structure is accounted for; this does not completely break the degeneracy of 
the energy levels. Because the energy levels depend on the quantum number  j , we add 
a subscript indicating the  j -value in our spectroscopic notation when including fi ne 
structure. For example, the   3/ 23p   energy level corresponds to   3n  ,   1l  ,   3 / 2j  . 
 Figure  14.4  , shows how the unperturbed hydrogen energy levels are split by the fi ne 
structure corrections.    

 The Dirac equation can be solved for the Coulomb potential, and it yields the exact 
relativistic energies for the hydrogen atom. The Dirac energies, after subtracting off the 
rest energy of the electron, are (ref. [14.4]):

   

1/ 22

2
2 2

1 1
1/ 2 1/ 2

njE mc
n j j

  . (14.88)

The energies in eq. (14.87) are consistent with the Dirac energies, to terms of order   4 .     
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1s1/2 

    

  Fig 14.4     The fi ne structure of hydrogen (not to scale). For the Coulomb potential the energies 
depend only on  n , while the fi ne structure energies depend on  n  and  j .   



 356   •  Q U A N T U M  M E C H A N I C S

   14.4    HYPERFINE STRUCTURE OF HYDROGEN   

 Until now we’ve been treating the proton as simply a point charge. However, like 
the electron, it also has a magnetic dipole moment that’s proportional to its spin. The 
proton thus produces a magnetic dipole fi eld, which is felt by the electron. The Hamil-
tonian of this interaction is given by (ref. [14.5], complement A.XII)   5   

  
2

3
2 3 3

0

ˆ ˆ ˆ ˆˆˆ 3 8 ˆ ˆˆ ˆ
38

e p e pp p
HF e p

e p

g e
H

m c m r r
r rS u S u S SL S

S S r  .

Here   pg   and   pm   are the  g  factor and the mass of the proton (  5.59pg  , and we’ve as-
sumed   2eg  ), and   ˆeS   and   ˆ pS   are the spin operators for the electron and the proton. 
This interaction is called the hyperfi ne interaction, because it leads to energy splittings 
that are smaller than the fi ne structure splittings. 

 The fi rst term in eq. (14.89) represents the interaction of the orbital motion of the 
electron with the dipole fi eld of the proton. We’ll simplify our discussion here to   0l   
states, so this term is 0.   6    The second term represents the dipole-dipole interaction of the 
proton and the electron; you’ll show in problem 14.18 that this term is also 0 for   0l   
states. Thus, the only term that contributes to the hyperfi ne interaction for   0l   is the 
third and fi nal term, which is known as the contact term. 

 To fi nd the hyperfi ne energies, we need to fi nd the eigenstates of   ˆ ˆ
e pS S  , within a 

given fi ne-structure level. Since the electron and the proton are both spin-1/2 particles, 
the eigenstates we seek are exactly the ones that we found in complement 8.C, which 
are the eigenstates of the total spin   ˆ ˆ ˆ

e pS S S  . These eigenstates are   , ss m  , with 
  0,1s   being the total spin quantum number. The square of the total spin is

   2 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2e p e p e p e pS S SS S S S S S   , (14.90)

so the hyperfi ne Hamiltonian for an   0l   state can be written as

   
2

2 2 2 3
2

0

ˆ ˆ ˆˆ ˆ
6

p
HF e p

e p

g e
H S S S

m c m
r   . (14.91)

Calculating the expectation value of this Hamiltonian for the hydrogen ground state, 
we see that the hyperfi ne energies are

   

2 2
21

1002
0

2 2 4

1 1 1 11 1 1 0
2 2 2 26

2 61 .
3 4

p
HF

e p

p e

p

g e
E s s

m c m

g m c
s s

m

  (14.92)

    5.     You will frequently see this Hamiltonian expressed using a different notation. The operator for the 
spin of the nucleus is often written as   Î  . Furthermore, you will often see the operator   ˆˆ ˆ ˆ ˆ ˆ= + = + +F J I L S I  , 
which is the total angular momentum, including that of the nucleus. 

    6.     For a discussion of the hyperfi ne interaction for   0l  , See ref. [14.6], sec. 22. 

(14.89)
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This energy shift is smaller than the fi ne structure energies by a factor of approximately 
  /e pm m  . 

 The hyperfi ne structure of the hydrogen ground state is shown in  fi g.  14.5  . The 
ground state splits into two levels, corresponding to   0,1s  . The true ground state is 
nondegenerate and is called the singlet state, while the upper level is three-fold degen-
erate (  0, 1sm  ) and called the triplet state. The transition between these states is used 
in the hydrogen maser, and it is also very important in astronomy. The frequency of this 
transition has been measured to 13 decimal places, making it one of the most accurately 
known physical quantities.       

   14.5    THE ZEEMAN EFFECT   

 If we apply an external magnetic fi eld   B   to a hydrogen atom, it will interact with the 
magnetic dipole moment of the atom; this is known as the Zeeman effect. The atomic 
magnetic dipole moment has contributions from both the orbital and the spin angular 
momenta of the electron,   7    so the Zeeman Hamiltonian is

   ˆˆ ˆˆ
2 2

e
Ze

g eeH
m m

L SB B   . (14.93)

The  g  factor of the electron affects the spin contribution to the dipole moment, whereas 
the orbital angular momentum contribution is given by the classical value (problem 
6.2). Since there’s no preferred direction in space for an atom, we are free to choose 
any direction we’d like for   B  . We’ll choose   B zuB  , and use   2eg  , which makes the 
Zeeman Hamiltonian

   ˆ ˆˆ ˆ ˆ2
2 2Ze z z z z
e eH L S J S

m m
B B   . (14.94) 

 If the external magnetic fi eld is small in comparison to the internal magnetic fi eld of 
the spin-orbit interaction, then we are in the limit of the weak-fi eld Zeeman effect. 
We’ll treat the weak-fi eld Zeeman effect here, and you’ll treat the strong-fi eld effect in 

    7.     We’re ignoring the magnetic dipole moment of the nucleus, which is small compared to that of the 
electron because of its much larger mass. We’re consequently ignoring the hyperfi ne structure. 

  

1s1/2 

hyperfine
structure

fine
structure

singlet (s=0)

triplet (s=1)

    

  Fig 14.5     The hyperfi ne splitting of the hydrogen ground state.   
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problem 14.20. In the weak-fi eld limit, the external fi eld splits the fi ne structure levels 
we determined in sec. 14.3. So, the unperturbed energies are the fi ne structure energies 
of eq. (14.87), and the unperturbed states are the eigenstates of total angular momen-
tum,   , , , j j

j l s m   (the subscript  j  is to distinguish these states from the states   , , ,l sl m s m  , 
which we will need below). 

 We need to choose the proper states for degenerate perturbation theory. The energies 
are degenerate for given values of  n  and  j , so we need to diagonalize   ˆ ZeH   in a subspace 
of fi xed  n  and  j.  We can see that   2L̂  ,   2Ŝ   and   ̂ zJ   commute with   ˆ ZeH  , and they also com-
mute with the unperturbed Hamiltonian,   0

ˆ ˆ
FH H  . The eigenstates of   2L̂  ,   2Ŝ   and   ̂ zJ  , 

  , , , j j
j l s m   (for fi xed  n  and  j ), are nondegenerate in the subspace we’re interested in, so 

we can use these states for the perturbation calculation, without having to do any matrix 
diagonalization. 

 To fi rst order, the energy corrections are given by the expectation values of the per-
turbing Hamiltonian,   ˆ ZeH   [eq. (14.94)]. The expectation value of   ̂ zJ   for the state 
  , , , j j
j l s m   is   jm  , but to calculate   ˆ

zS   we need to express   , , , j j
j l s m   as a linear 

combination of the states   , , ,l sl m s m  . There is only one allowed value for  s , 1/2, which 
simplifi es things, but we won’t determine these linear combinations here. We’ll simply 
state the result, which is   8   

   

1 1 1 1 1 11/ 2, , , , , ,
2 2 2 2 22 1

1 1 1 1, , , .
2 2 2 2

j j j
j

j j

l l m l m l m
l

l m l m

  (14.95)

Using these states and eq. (14.94), the determination of the weak-fi eld Zeeman energy 
levels is straightforward, and the result is

   

1 ˆ

1 1
1 12 2

2 2 1 2 2 1 2

11 .
2 2 1

ZeZe

j j

j

j

E H

l m l me m
m l l

e m
m l

B

B

  (14.96)

The choice of     depends on the value of  j :   1/ 2j l  . The term in brackets is called 
the Landé  g  factor, as it plays the role of an effective  g  parameter for the electron. Thus, 
the energies are often written as

    8.     This calculation is performed in ref. [14.5], complement A.X. The procedure mimics that of comple-
ment 8.C in this text. One of the linear combinations can be found fairly easily, and the raising and lowering 
operators can be used to generate the rest. 



14:  T IME-INDEPENDENT PERTURBATION THEORY  •   359 

   1

2 jZe
geE m

m
B   . (14.97)

A weak magnetic fi eld breaks the degeneracy of the fi ne structure levels, as the Zeeman 
energies also depend on the quantum number   jm  .      
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         14.7  PROBLEMS    

            14.1     A constant perturbation of the form   0
ˆ

pH V   is applied to an arbitrary unper-
turbed Hamiltonian   0Ĥ  . Calculate the energy corrections to second-order, and the 
wave function corrections to fi rst order. Assume nondegenerate energy levels.  

      14.2     An infi nite potential well extends from   0x   to   x L  , and it has a small bump 
in the middle. Assume the perturbation is of the form

   0 / 2 / 2 / 2 / 2
0p

V L a x L a
H

elsewhere
  , (14.98)

where   a L  . (a) Calculate the fi rst-order corrections to the energies. (b) Approxi-
mate the energies for the case that   a L .  

      14.3     An infi nite potential well extends from   0x   to   x L  , and it has a corrugated 
bottom. Assume the perturbation is of the form

   0
2 sinp

MH V x
L L

  , (14.99)

where  M  is an integer (  0M  ). Calculate the fi rst-order corrections to the ener-
gies. Does your answer seem reasonable?  

      14.4     Show that the corrected eigenstates [eq. (14.6)] are normalized to fi rst-order 
(i.e., if terms of order   2  and higher are ignored).  
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      14.5     Find the fi rst-order corrections to the wave functions in example 14.1.  
      14.6*     The translation operator   ˆ /ˆ ipDT D e   translates states in space (see sec. 

10.2). Expand this operator to fi rst order in  D , and apply it to the Fock states   n  . 
Is your answer consistent with that from example 14.2?  

      14.7     A 3-D, symmetric harmonic oscillator (problem 13.2) experiences a perturba-
tion, so that it is no longer symmetric. Treat the perturbing Hamiltonian as 
  2ˆ ˆ1/ 2pH x  . To fi rst order, what affect does this have on the energies of the 
ground and fi rst-excited states of the oscillator?  

      14.8     Use the virial theorem [eq. (13.121)] to calculate   1r̂   for energy eigenstates 
of the hydrogen atom.  

      14.9     It can be shown that   ˆvr   (where  v  is an integer) for a hydrogen atom in the state 
  , , ln l m   is:

  
1 1

0

0

1 1 1
ˆ 1 ! 1

1 12 2

v v v
kv

k

v n l k n l kna
r v

k v vn
  , (14.100)

  if   1v  , and

   0

0

1
1ˆ 1

2 12 2 1 !
1

v
kv

k

n l k
kna

r
l kn

  , (14.101)

  if   2v  . In these expressions the symbol   
j
k

  is the binomial coeffi cient, and 

  2v  .   9    Use these expressions to calculate   1r̂   and   2r̂  .  

      14.10     Show that   ˆ SOH   commutes with   2L̂   and   2Ŝ  , but not   ̂ zL   and   ̂ zS  .  

      14.11*     Show that   2Ĵ   and   ̂ zJ   commute with   0Ĥ   (the unperturbed hydrogen atom Ham-

iltonian) and   ˆ SOH  .  

      14.12     Use eq. (14.101) to calculate   3r̂  .  

      14.13*     Show that the expression for   1
SOE   in eq. (14.79) yields

   
2 4

1
32SO

mcE
n

  (14.102)

  for   0l  . (Hint: for   0l   there is only one possible value for  j :   1/ 2j l  .)  
      14.14     To second order in   r  , compute the average of   V r r   over a sphere of radius 

   c , centered on   r .  

    9.     These formulas are adapted from ref. [14.6], sec. 3. Expressions for some specifi c values of  v  may be 
found there as well.  
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      14.15     Verify eq. (14.86). You may fi nd the following relation useful:

   
!

0
! !

k
j

j k
L

j k
  . (14.103)  

      14.16*     Add together the individual contributions to the fi ne structure of hydrogen to 
obtain eq. (14.87). (Hint: There are three cases:   0l  , and   0l   with two pos-
sible values for  j .)  

      14.17     Calculate the fi ne structure shifts in the   2n   level of hydrogen. Compare them 
to the energy separation of the   2n   and   3n   levels.  

      14.18*     Show that for spherically symmetric wave functions, the dipole-dipole term 
of the hyperfi ne Hamiltonian [eq. (14.89)] does not contribute to the hyperfi ne 
energies.  

      14.19*     Calculate the frequency and wavelength of the radiation emitted when a hydro-
gen atom makes a transition between the two hyperfi ne ground states.  

      14.20     The strong-fi eld Zeeman effect occurs when the external magnetic fi eld is much 
larger than the internal fi eld responsible for the spin-orbit effect. Show that in 
this limit, the states   , , ,l sl m s m   are the appropriate ones to use in calculating 
the fi rst-order energy corrections. Calculate these corrections.  

      14.21     If a constant, uniform electric fi eld   zEuE   is applied to an atom, we observe 
what is known as the Stark effect (or the DC Stark effect). (a) Show that, to fi rst 
order, there is no Stark shift in the energy of the   1n   level of hydrogen. (b) To 
fi rst order, calculate the energy splitting of the   2n   level. (Hint: Look at the 
angular integrals fi rst.)  

      14.22       Â  commutes with   0Ĥ   and   ˆ pH  , and it corresponds to an observable. Assume that 

the states   0
,n j  , which are the degenerate eigenstates of   0Ĥ   within a subspace 

of fi xed  n , are simultaneously nondegenerate eigenstates of   Â . Show that the 
matrix representation of   ˆ pH   in the basis of these states is diagonal, which means 
that they are the eigenstates we seek for use in degenerate perturbation theory 
[the eigenstates determined by eq. (14.40)].              
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         CHAPTER 15 

Time-Dependent Perturbation 
Theory  

    In  chapter  9   we developed a theory of the time evolution of states. We found that if 
the Hamiltonian of a system is time-independent, the time evolution of the state is 
relatively simple. But what if the Hamiltonian does depend on time? So far we have 
only treated one example of a system whose Hamiltonian was time-dependent, that 
of magnetic resonance in complement 9.A. In this chapter we will apply perturbation 
theory to problems with time-dependent Hamiltonians. 

      15.1    TIME EVOLUTION OF THE STATE   

 Assume that we have a Hamiltonian of the form 

   0
ˆ ˆ ˆ

pH t H H t   . (15.1)

Here   0Ĥ   is a time-independent Hamiltonian, for which we know the exact eigenstates 
and eigenvalues:

   0 0 0
0

ˆ
n n nH E   . (15.2)

  ˆ pH t   is a time-dependent perturbation, and     is once again a parameter whose values 
can range from 0 to 1. We’ll use     as a bookkeeping parameter to allow us to keep track 
of the order of perturbation, just as we did in  chapter  14  . 

 We’d like to determine time dependence of an arbitrary state, so we need to use the 
Schrödinger equation, which tells us that [eq. (9.11)]:

  ˆd it H t t
dt

  . (15.3)

Let’s write   t   in the basis of the states   0
n   as 
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    0i tj
j j

j

t c t e   . (15.4)

The key difference between the solution for a time-independent Hamiltonian [eq. 
(11.16)] and a time-dependent Hamiltonian [eq. (15.4)] is that for a time-dependent 
Hamiltonian the coeffi cients   jc t   are time-dependent. 

 Substitute eq. (15.4) into eq. (15.3), which yields 

    0 0
0

ˆ ˆi t i tj j
j j j p j

j j

d ic t e c t e H H t
dt

  . (15.5)

If we apply   0
n  , and use the orthogonality of the states, we fi nd 

   
0

00 ˆi ti t i t jnn n
n n j n p j

j

Ed ic t e i c t e c t e H t
dt

  . (15.6)

If we use the product rule on the derivative, and the Planck relation   0
n nE  , we fi nd 

that we can cancel terms, yielding 

    00 ˆi ti t jn
n n p j j

j

d ie c t e H t c t
dt

  . (15.7)

If we defi ne   nj n j , and 

    00 ˆ
p nj n p jH t H t   , (15.8)

we can rewrite this as 

    i tnj
n p nj j

j

d ic t e H t c t
dt

  . (15.9)

This is an exact equation for the   nc t  ’s, given the Hamiltonian of eq. (15.1).   

   15.1.1    Perturbation Solution   

 Now let’s perform a perturbation expansion of the coeffi cients   nc t  :

   0 1 22
n n n nc t c t c t c t  . (15.10) 

In order for perturbation theory to be valid when   1 , the corrections   k
nc t   must get 

smaller as the order of perturbation ( k ) increases. For small times this is almost always 
the case. If we substitute eq. (15.10) into eq. (15.9), and equate terms with equal powers 
of   , we see that the zeroth-order (  0 ) terms yield 
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    0 0n
d c t
dt

  , (15.11)

and the fi rst-order terms yield 

    01 i tnj
n p nj j

j

d ic t e H t c t
dt

  . (15.12)

In general, the differential equation for the  k  th -order term is 

    1i t kk nj
n p nj j

j

d ic t e H t c t
dt

 1, 2,k   , (15.13)

which allows us to express any order correction in terms of corrections that are one 
order lower. 

 Now we need to specify the initial conditions. We’ll assume that the perturbation 
“turns on” at   0t  , so that  ˆ 0pH t   for  0t  . At   0t   eq. (15.4) becomes 

    00 0j j
j

c   . (15.14) 

so the   0jc  ’s uniquely specify the initial conditions. Since there is no perturbation for 
0t   , the solution at   0t   is a zeroth-order solution (equivalent to   0 ), so examining 

eq. (15.10) we fi nd 

    00 0n nc c   , (15.15)

   0 0k
nc   ,  1, 2,k   . (15.16) 

 The differential equation for the zeroth-order terms [eq. (15.11)] tells us that the 
  0

nc t  ’s are constant, and the initial conditions of eq.(15.15) then yield 

    0 0 0 0n n nc t c c   . (15.17)

Substituting this into the differential equation for the fi rst-order terms [eq. (15.12)], we 
see that 

    1 0i tnj
n p nj j

j

d ic t e H t c
dt

  . (15.18)

We can now integrate this equation; using the initial conditions of eq. (15.16), we fi nd 

    1

0

0
t

i tnj
n j p nj

j

ic t c dt e H t   . (15.19)
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Substituting eqs. (15.17) and (15.19) into eq. (15.10) (with   1 ), we see that to fi rst 
order the time-dependent state is determined by the coeffi cients 

    
0

0 0
t

i tnj
n n j p nj

j

ic t c c dt e H t   . (15.20) 

 Equation (15.20) is the main result of time-dependent perturbation theory. Given the 
matrix elements of the perturbing Hamiltonian [eq. (15.8)] and the initial conditions, 
we can calculate the fi rst-order corrections to the coeffi cients which determine the 
time-dependent state. If higher-order corrections are desired, we can substitute the 
lower-order solutions into eq. (15.13) and integrate.    

   15.1.2    Transition Probabilities   

 One thing that we can calculate fairly easily using time-dependent perturbation theory 
is the probability that a system will make the transition from one state to another. For 
example, suppose that at   0t   system is in the initial state   0

i  . This means that our 
initial conditions are 

    0n nic   . (15.21)

If there is no perturbation the system is in an eigenstate of the Hamiltonian, and 
will stay that way forever. However, we’ll assume that we turn on the perturba-
tion at   0t  . We’d like to know the probability that the perturbation causes the sys-
tem to make a transition to some fi nal state   0

f  . This time-dependent transition 
 probability is given by 

    

2
0

2
.

if f

f

P t t

c t

  (15.22)

Since we’re talking about a transition to a fi nal state that is different from the initial 
state, we know that f i  , and eq. (15.21) tells us that   0 0fc  . Using this, and also 
using eq. (15.21) in eq. (15.20), we see that 

    
0

t
i tfi

f p fi
ic t dt e H t   . (15.23)

Equations (15.22) and (15.23) determine the probability that the system will make a 
transition from the initial to the fi nal state, to fi rst order.     



15:  T IME-DEPENDENT PERTURBATION THEORY  •   367 

   15.2    SINUSOIDAL PERTURBATIONS   

 Now that we’ve developed a general theory of time-dependent perturbations, let’s con-
sider a special case, that of the two-level system shown in  fi g.  15.1  . We’ll assume that 
the system starts in state   1   at 0t   , so we have   1 0 1c   and   2 0 0c  . Since there’s 
only one transition, we’ll defi ne   0 21 2 1 /E E   to be the resonance frequency 
associated with it.    

 From eq. (15.22), the probability that the system will make a transition from   1   to 
  2   is   

2
12 2P t c t  , where   2c t   is given by eq. (15.23):

   0
2 21

0

t
i t

p
ic t dt e H t   . (15.24)

We’ll assume that the perturbation varies sinusoidally in time, so the perturbing Ham-
iltonian is 

    ˆ ˆ cospH t V t  . (15.25)

The matrix element we need in eq. (15.24) is 

   21 21
ˆ2 1 cos cospH t V t V t   . (15.26)

Substituting this into eq. (15.24) yields 

   

0

0 0

0 0

2 21
0

21

0

21

0 0

cos

2

1 1 .
2

t
i t

t
i t i t

i t i t

ic t V dt e t

iV
dt e e

V e e

  (15.27)

The transition probability is then the square magnitude of this:

  1

2

Δ = ωh 0E

    

  Fig 15.1     A two-level system, with a resonance frequency of   ω0 .   
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0 0

22
21

12 2
0 0

1 1
4

i t i tV e eP t   . (15.28) 

 This expression is valid for arbitrary drive frequencies, as long as the probability 
remains small. We can simplify things, however, if we assume that the drive frequency 
is close to resonance; this is the interesting case anyway, as it’s the only time that 
there’s signifi cant probability of a transition. We’ll assume that   0 , or more spe-
cifi cally that   0 0 . With this approximation we fi nd   1    

    

0
22

21
12 2

0

2
021

2 2
0

2 2
021

2 2
0

1
4

2 2cos

4

sin / 2
.

i tV eP t

tV

tV

  (15.29)

This probability oscillates sinusoidally in time, with a frequency of   0 . The maxi-
mum probability is 

    
2

21
12max 22

0

V
P   . (15.30) 

 Why does the probability oscillates in time, and not simply grow? The answer is that 
as soon as the probability of being in 2    is nonzero, the perturbation can drive the sys-
tem from   2   back to   1  . Indeed, you’ll show in problem 15.5 that the probability of 
making a transition from   2   to   1   is the same as the probability of making the transition 
from   1   to   2  , that is,   21 12P t P t  . Since the perturbation can drive the system in 
either direction, it oscillates between the two states. 

 What happens if we drive the system perfectly on resonance, that is,   0 ? The 
denominator in eq. (15.29) diverges, but if we multiply the numerator and denominator 
by   2/ 2t  , we fi nd 

    

2 22
021

12 2 2
0

2 2
21 2

02

sin / 2
,

4 / 2

sinc / 2 ,
4

tV t
P t

t

V t
t

  (15.31)

   1.     For a further discussion of validity of this approximation, see ref.   [15.1]  , sec. XIII.C.2. 
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where sinc( ) sin /x x x   . This transition probability is plotted as a function of the 
drive frequency in  fi g.  15.2  . It can be seen that the probability peaks at   0 , as we’d 
expect. Furthermore, the peak gets taller and narrower as time increases.    

 One way to explain this behavior is to realize that the time and frequency aspects of 
the perturbation oscillations are related by a Fourier transform. The longer the oscilla-
tions go on in time, the more well-defi ned their frequency becomes; the drive frequency 
must then be closer to the resonance frequency in order to drive a transition. If an oscil-
lating signal at frequency     is on for a time period of   t , the width of its spectral dis-
tribution is   1/ t   [see also eq. (2.A.13)], which is consistent with the width of the 
distribution in  fi g.  15.2  .   2    

 Perfectly on resonance, eq. (15.31) predicts that the transition probability will grow 
quadratically in time. Clearly at some point in time this will violate our perturbation 
assumption that the probability is small. How can we deal with this problem? One way 
is to go to a higher order of perturbation theory. Another way is to go back and try to 
solve the problem more exactly. Notice that we have made 2 assumptions in deriving 
eq. (15.31). First, we assumed the validity of fi rst-order perturbation theory, essentially 
assuming that   12P t   is small. Second, we assumed that we were driving the system 
near resonance (  0 ). What happens if we make the near resonance approximation 
at the beginning? Can we avoid the perturbation assumption in that case? If you recall 
the discussion in complement 9.A, where we discussed magnetic resonance, you’ll 
realize that the answer is yes. You’ll explore this in problem 15.8.    

   15.3    ATOMS AND FIELDS   

 Let’s apply perturbation theory to the very important example of an atom in an electro-
magnetic fi eld. A hydrogen atom, for example, consists of an electron “orbiting” a proton. 
In general this atom will have an electric dipole moment, or have one induced by the fi eld, 

  
ω0

π
ω +0

2
t

π
ω −0

2
t

ω

h

2 2
21

24
V t

( ),ω12P t

    

  Fig 15.2     The transition probability   P t12 ,   is plotted as a function of the drive frequency   .   

    2.     Since energy and frequency are related by the Planck relation   E  , this is also consistent with the 
energy-time indeterminacy relation:   / 2E t  . 



 370   •  Q U A N T U M  M E C H A N I C S

and this dipole will in turn interact with the fi eld. If the atom is smaller than the wavelength 
of the fi eld, this interaction is described by the electric-dipole Hamiltonian, which is 

    ˆ ˆ
EDH t td E   . (15.32)

Here d̂   is the electric dipole moment operator for the atom, and the fi eld is evaluated at 
the position of the atom.   3    For hydrogen   ̂d  is given by   ̂ ˆerd =  , with   ̂r   being the posi-
tion operator for the electron. If we assume that the fi eld is linearly polarized along the 
 z -direction, the electric-dipole Hamiltonian becomes 

    ˆˆ d cosED zH t tE   , (15.33)

where     is the angular frequency of the fi eld. The theory of the interaction between 
the atom and the fi eld we are presenting here is referred to as semiclassical, because 
the fi eld is being treated as a classical electromagnetic wave, while the atom is being 
treated quantum mechanically. 

 The electric-dipole Hamiltonian varies sinusoidally, like the Hamiltonian in eq. 
(15.25). Assuming that there are only two atomic states whose resonance frequency is 
close to that of the drive frequency, we can then use eqs. (15.29) and (15.31) to write 
the probability of the atom making a transition from one state to another as 

   

2 2
2

12 022
0

2 2 2
2

02

d
, sin / 2

d
sinc / 2 .

4

z

z

P t t

t
t

E

E

  (15.34)

The probability of the atom making a transition to the excited state varies sinusoidally 
in time, while its frequency behavior is illustrated in  fi g.  15.2  . 

 Assume that we’re talking about a hydrogen atom initially in the ground state. The 
dipole matrix element in eq. (15.34) is then given by 

   100
ˆ ˆd 2 d 1 , , 1,0,0

lz z l nlm
all
space

e n l m z e dV zr r   . (15.35)

In spherical coordinates we can write   0
1cos 4 / 3 ,z r r Y  . With this substi-

tution, the angular part of the integral in eq. (15.35) is 

 
2

* 0
1 1 0

0 0

4 1 1sin , ,
3 34

l

l

m
l mld d Y Y     , (15.36)

    3.     This is referred to as the electric-dipole approximation. The next higher-order terms in the interac-
tion Hamiltonian are the electric-quadrupole and magnetic-dipole terms. These terms are smaller than the 
electric-dipole term by a factor of the order of the fi ne-structure constant    , and are typically only important 
if the electric-dipole term is 0 [15.2]. 
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because the spherical harmonics are orthogonal. If   d 0z   the probability of a transition 
between the states is 0, so, for our  z -polarized electric fi eld the only states that a ground-
state hydrogen atom can make a transition to are states with   1l  , and   0lm  . More 
generally, it can be shown that for an atom to make an electric-dipole transition from 
one state to another, the following selection rules must be satisfi ed:   2 1 1l l l  , 
  

2 1
0, 1l l lm m m  .   4      

   15.3.1    Fields with a Broad Spectrum   

 To this point we have been considering monochromatic fi elds, but we’ll fi nd it use-
ful to generalize to a fi eld with a broad spectrum. We’ll also fi nd it useful to express 
our transition probability not in terms of the electric fi eld, but in terms of the electro-
magnetic energy density (energy/volume). The time-averaged energy density  U  of an 
electromagnetic wave is related to the amplitude of the electric fi eld by (ref.   [15.3]  ):

   2
0

1
2

U E    , (15.37)

so eq. (15.34) becomes 

    
2 2

2
12 02

0

d
, sinc / 2 .

2
z Ut

P t t   (15.38) 

 If the fi eld has a broad spectrum, the energy density in the frequency interval 
between     and   d   is 

    U u d   , (15.39)

where   u   is the spectral energy density. Each piece of the spectrum contributes to 
the transition probability, so to fi nd the total transition probability we need to integrate 
over all the spectral contributions. Combining eqs. (15.38) and (15.39) and integrating, 
we fi nd that 

    
2 2

2
12 02

0 0

d
sinc / 2

2
z t

P t d u t   . (15.40)

There are two functions inside the integral,   u   and   2sinc  . Let’s assume that the 
frequency spread of   u   is much broader than the spread of   2sinc  , as shown in 
 fi g.  15.3   (this is valid for times that are longer than several fi eld oscillation periods). If 
this is the case, then   u   is approximately constant over the width of   2sinc  , so we 
can evaluate   u   at the peak of   2sinc   (at   0 ) and factor it out of the integral. 
Equation (15.40) then becomes 

    4.     See, for example, ref.   [15.1]  , complement A.XIII. 
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2 2

2
12 0 02

0 0

d
sinc / 2

2
z t

P t u d t   . (15.41)

Under the conditions we’re assuming here   2sinc   is narrow [fi g. 15.3], so we can 
replace the limits of integration by    . The integral then equals  2 / t   , so 

    
2

12 02
0

d z t
P t u   . (15.42)

Changing from monochromatic to broad-bandwidth illumination causes the time de-
pendence of the transition probability to go from sinusoidal in time to linear in time. 
This result is valid for times small enough that   12 1P t  .       

   15.3.2    Many Atoms   

 Suppose that instead of a single atom, we have a large collection of atoms. Unless these 
atoms are part of a crystal lattice, which has a preferred direction in space, their dipole 
moments will be randomly oriented with respect to our electric fi eld polarization. To 
calculate the average probability that one of the atoms will make a transition, we need 
to average over the orientations of the dipole moments. This averaging will replace the 

factor of   2 2d z E   in eq. (15.34) with   2
td E   (the overbar denotes an average with 

respect to orientation). 
 We begin with 

    
2 2 2 2d cost Ed E  , (15.43)

where     is the angle between   d  and   E  . Averaging over all possible angles, we fi nd 

  

u (ω) [ ]2sinc …

ωω0     

  Fig 15.3     The spectral energy density,   u  , and   /t2
0sinc 2   are plotted as functions 

of    .   
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  , (15.44)

which means 

    
2 2 21 d

3
t Ed E   .

Thus, we can obtain the average transition probability for a randomly oriented dipole 
by making the substitution   2 2d (1/ 3) dz   in eq. (15.34). This substitution also ap-
plies to eq. (15.42), yielding 

    
2

12 02
0

d

3

t
P t u   . (15.45)

The transition rate (transition probability per time) is simply the derivative of this, so 
it is 

 
2

12 12 02
0

d

3
dR P t u
dt

    . (15.46)

The transition rate is constant, a result known as Fermi’s Golden Rule.    

   15.3.3    Stimulated and Spontaneous Emission   

 In 1917 Einstein considered a collection of atoms in thermal equilibrium at temperature 
 T  with a black-body radiation fi eld. He considered two-level atoms, with an energy 
difference of   0 , and the energy transfer between the levels was described by the 
processes shown in  fi g.  15.4  . We’ll replicate Einstein’s arguments in complement 15.A; 
here we’ll simply state the fi nal result.    

  1

2

( )ω12 0B u ( )ω21 0B u 21A

N1

N2

    

  Fig 15.4     Einstein’s model of a collection of two-level atoms in thermal equilibrium with a 
fi eld. There are   N1  atoms in state   1   and   2N   atoms in state   2  , and the transition rates are 
indicated.   
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 As seen in  fi g.  15.4  , there are three possible ways for the atoms to make transitions 
between energy levels. The atoms can go from the ground state to the excited state by 
absorbing energy from the fi eld; the rate at which this process occurs is   12 0B u  , 
where  12B   is a constant and   0u   is the spectral energy density of the fi eld at the 
atomic resonance frequency. The atoms can go from the excited state the ground state 
in two ways. The fi eld can cause transitions at the rate   21 0B u  ; this process is called 
stimulated emission. The atoms can also decay by spontaneous emission at the rate 
  21A  .The atoms and fi eld are assumed to be in thermal equilibrium, so   u   is given 
by the Planck black-body spectrum. Einstein showed that the constants must be 
related by:

   21 12B B   , (15.47)

  
3
0

21 122 3A B
c

  . (15.48)

If one of the constants is known, the other two can be determined. However, quantum 
mechanics was not yet available to Einstein, so he had no way to go any further. 

 However, we just calculated the rate at which atoms will absorb energy from a fi eld 
to make transitions to an excited state. Setting Einstein’s absorption rate,   12 0B u  , 
equal to the rate we calculated in eq. (15.46), we fi nd 

    
2

12 2
0

d

3
B   . (15.49)

Furthermore, in problem 15.5 you’ll show that perturbation theory predicts 
  21 12P t P t  , which means   21 12R R  , which is in agreement with Einstein’s predic-
tion of eq. (15.47). Using eq. (15.48), the spontaneous emission rate is then 

    
2 2 33

00
21 2 3 2 3

0 0

d d

3 3
A

c c
  . (15.50)

Since 21A    is the rate at which atoms will decay from the upper state in the absence of an 
applied fi eld, the upper state lifetime is given by   211/ A  .    

   15.3.4    Discussion   

 Using our semiclassical theory, we are able to directly calculate the values of the ab-
sorption and stimulated emission rates (Einstein  B  coeffi cients). However, to determine 
the spontaneous emission rate  A  we need to resort to Einstein’s thermodynamic model 
and eq. (15.48). Can we calculate  A  directly? The answer is yes, but not by using the 
semiclassical theory we have developed here. Assume that the atom starts in the excited 
state,   2 0 1c  , and there is no external fi eld,   0u  . Semiclassical theory predicts 
that the atom will stay in the excited state for all time, as it is an eigenstate of the 
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Hamiltonian in the absence of an external fi eld. For the atom to make a transition to the 
ground state there must be a perturbation, which requires the external fi eld. 

 In chap. 16 we will develop a theory that can calculate  A  directly.     

   15.4    THE PHOTOELECTRIC EFFECT   

 We now have all the tools necessary to give a semiclassical explanation of the photoelec-
tric effect. In the photoelectric effect an applied electric fi eld excites an electron that is ini-
tially in a bound state to a free state. We can then detect the presence of this free electron. 
In this section we will model our system as an atom, and the free states are then the positive 
energy states that represent the atom being ionized; there is a continuum of such states.   5    
The model we will adopt is shown in  fi g.  15.5  . As seen in this fi gure, the applied fi eld 
oscillates at frequency    , and this fi eld couples the ground state to the continuum levels.    

 We’ll choose the energy of the system to be 0 at the bottom of the continuum level. 
The energy of the ground state is   1E  , which is negative. The ionization energy   IE   is the 
minimum energy required to excite an electron from the ground state to the continuum 
levels, and as such   1IE E  . Earlier in this chapter we used the parameter   0  to repre-
sent the resonance frequency between two energy levels. Here, the resonance frequency 
associated with the ground state and a continuum level with energy  E  is   0 /IE E   
[see  fi g.  15.5  ]. We can use eq. (15.34) to write the probability that the system will make 
a transition from the ground state to a state with energy  E  as 

    

2 2 2
2
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2
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d
sinc / / 2

4
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= sinc / 2 .
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E t
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  (15.51)

    5.     Modern photodetectors typically use semiconducting materials, and the free states are then conduction 
band states, where the electron is free to move. 

  1E1

EI

E

ωh

    

  Fig 15.5     A classical electromagnetic fi eld of frequency     couples state   1   to a continuum of 
free states.   IE   is the ionization energy, and  E  is the energy in the continuum (  E 0  at the bot-
tom of the continuum).   
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Here we have also made it explicit that the dipole matrix element depends on the fi nal 
state:   ˆd d 1z zE E  .   6    

 There is a continuum of ionized states, and we are interested in the probability that 
we detect a free electron. Since any of the positive energy states represent a free elec-
tron, the detection probability is given by the integral over all positive energies. In gen-
eral the density of states   En   in the continuum is not uniform, and we need to multiply 
the probability of a transition to a particular energy state by the number of states at that 
energy. The number of states between energies   E  and   E dE   is   E dEn  , and integrat-
ing over all energies yields the total probability that we detect a photoelectron:

   
2 2 2 2

2
0

d sinc / 2
4 z I

tP t dE E E E E tE n   . (15.52)

The function   2sinc   in Eq. (15.52) is a function of  E , and has a peak at   IE E  . 
As time increases, this function becomes narrower in its energy spread [see the discus-
sion following eq. (15.31)]; we’ll assume that the time is long enough that   2sinc   is 
narrow. In order for the integral to be nonzero, the peak must then be located at positive 
energies (  IE  ). The spread of   2sinc   is also much narrower than the spread of 

 
2

d zE En  . Thus,   
2

d zE En   is essentially constant over the width of   2sinc  , 
so it can be evaluated at the peak of   2sinc   and factored outside of the integral, 
yielding   7    

   
2 2 2 2

2
0

d sinc / 2
4 I z I I

tP t E E dE E E tE n   .  (15.53)

Once again we can approximate the integral by extending the limits to    . In this case 
the integral is   2 / t , so the probability of detecting the photoelectron is 

    
2 2d

2 I z IP t E E tn E   . (15.54)

In chap. 2 we defi ned the intensity  I  to be equal to the square magnitude of the fi eld, 
and with this defi nition we have 

    P t I t  . (15.55)

    6.     The fi nal state   E   is the state of a free electron, so   E   is the 3-D analog of a state of defi nite momen-
tum, as discussed in  chapter  10  . 

    7.     This situation is analogous to that described in sec. 15.3.1. There we had a broad distribution of fi eld 
frequencies and a narrow atomic resonance. Here we have a well-defi ned fi eld frequency and a broad distri-
bution of atomic energies. The end result is essentially the same. 
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If we generalize from a single atom to a real detector, we can view     as a measure of 
the effi ciency of the detector.   8    Remember that everything we have done here is based 
on perturbation theory, so eq. (15.55) is valid in the limit of small times, so that the 
probability   P t   is small. 

 Equation (15.55) is very simple, but it is an important result. It says that the photo-
electron detection probability is linearly proportional to the intensity striking the detec-
tor and linearly proportional to the time. Recalling that the detection rate is the time 
derivative of the probability, this means that the rate is constant in time. 

 Our model explains the following features of the photoelectric effect: 
   
       1.     There is a threshold frequency,   /IE  , for the applied fi eld. For frequencies 

below the threshold no photoelectrons will be observed, while we do observe pho-
toelectrons for higher frequencies.  

      2.     Above the threshold frequency, the energy of the emitted electrons is linearly pro-
portional to the frequency of the applied fi eld:   IE E  .  

      3.     For any arbitrarily small time after the fi eld strikes the detector, there is a fi nite prob-
ability of observing a photoelectron.   

   
   Note that in 1905 Einstein proposed a model of the photoelectric effect that included 

these three features.   9    The main difference between our model and Einstein’s is that ours 
treats the fi eld as a classical electromagnetic wave, whereas Einstein assumed that the 
fi eld consists of photons. Because Einstein’s model was so successful, it was originally 
believed that photons were necessary to explain the photoelectric effect. Since there are 
no photons in our model, we have just shown that that is not the case; the photoelectric 
effect does not serve as proof that electromagnetic waves contain photons. 

 An experiment demonstrating that light truly is made of photons is described in lab 
2. There we are interested in the probability of a photoelectric detection at a time  t , 
within a small time window   t , for a fl uctuating fi eld. In this situation eq. (15.55) gen-
eralizes to 

    ,P t t I t t  . (15.56)

Here the brackets indicate an average of the fl uctuating intensity.      
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         15.6  PROBLEMS    

           15.1     Determine the transition probability   12P t   for the case of a constant perturba-
tion that turns on at   0t  :   ˆ ˆ

pH t V  . Use fi rst-order perturbation theory.  
      15.2     A two-level system experiences a pulsed perturbation:

   
ˆ 0ˆ
0p
V t TH t

t T
  . (15.57)

  (a) Use fi rst order perturbation theory to calculate the transition probability 
  12P t   for   t T  . (b) Let   /V T  , so that the “area” of the perturbation is con-
stant, and let   0T  ; what is   12P t   in this case?  

      15.3     A particle with a charge  q  is in the ground state of an infi nite square well of 
width  L . An electric fi eld   xuEE   is turned on at   0t  , and turned off at   t T  . 
What is the probability that the charge ends up in the fi rst-excited state after the 
fi eld is turned off?  

      15.4*    If the Hamiltonian of a system changes “suddenly” (i.e., on a timescale much 
faster than any timescale that the system can respond to), the state of the system 
before and after the change is the same; the system simply doesn’t have time to 
change states. However, since the Hamiltonian has changed, so have its eigen-
states. If the system was in an eigenstate of the Hamiltonian before the change, 
it will in general be in a superposition of eigenstates after. 

      If a 1-D infi nite square well has its width suddenly increased by a factor of 
10%, what is the probability that a particle in the ground state of the initial well 
will be found to be in the fi rst excited state of the new well?  

      15.5*    Calculate the probability that a system will make a transition from level 2 to 
level 1   21P t   for a sinusoidal perturbation, assuming that the system is driven 
near resonance. Compare your result to   12P t   [eq. (15.29)].  

      15.6     An electric fi eld of the form 

  /

0 0

1 0t

t
t

e t
E

E
     (15.58)

is applied to a two-level atom whose energy levels differ by   0E  . Calculate the 
probability   12P t   that the atom will make a transition from the lower to the upper state 
in two limits: (a)   01/  , (b)   01/  .  
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      15.7     A collection of hydrogen atoms are all in the 2 p    0m   state. What is the lifetime 
of this state?  

      15.8*     Solve the exact equations (15.9), using the electric-dipole Hamiltonian of eq. 
(15.33), and making the near-resonance approximation. Assume a hydrogen 
atom starts in its ground state, and consider only one excited state that is being 
driven near resonance. Show that the transition probability is given by 

    
2 2

2
12 2 2

d
sin / 2z

R
R

P t t
E

  , (15.59)

where the generalized Rabi frequency   R   is   10      

  
2 2

2
0 2

d z
R

E
  . (15.60)

  Show that this result reduces to the perturbative result in the appropriate limit. 
[Hints: (1) Use selection rules to simplify the initial differential equations. (2) 
If you get stuck, refer to complement 9.A.]           

    10.     The Rabi frequency is equal to the generalized Rabi frequency on resonance ( 0  ).   



    COMPLEMENT 15.A      

  Einstein’s  A  and  B  Coeffi cients   

 Here we present Einstein’s model of a collection of two-level atoms in thermal equilib-
rium with a black-body radiation fi eld [15.A.1]. 

 The basic model is depicted in  fi g.  15.4  . A collection of two-level atoms have states 
whose energies are separated by   0 . There are   1N   atoms in level 1,   2N   atoms in level 
2, and the atoms are in thermal equilibrium with a fi eld whose spectral energy density 
is   u  . There are three ways that atoms can make transitions between the two levels: 
absorption at the rate   12 0B u  , stimulated emission at the rate   21 0B u  , and sponta-
neous emission at the rate   21A  . 

 We can write down differential equations for the numbers of atoms in the two levels; 
these equations are known as rate equations. Using  fi g.  15.4   as a guide, we see that 
these equations are 

    1 12 0 1 21 0 2 21 2
d N B u N B u N A N
dt

  , (15.A.1)

  2 12 0 1 21 0 2 21 2 1
d dN B u N B u N A N N
dt dt

  . (15.A.2)

If the atoms and the fi eld are in thermal equilibrium, the time derivatives must be 0. 
Setting eq. (15.A.1) equal to 0, we see that 

    12 0 1 21 0 2 21 2B u N B u N A N   . (15.A.3)

Solving for the spectral energy density, we fi nd 

   21 2 21 21
0

12 1 21 2 211 12 1
12 21

2 21 2

1

1

A N A Au
B N B N BN B NB B

N B N

  . (15.A.4) 
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 The ratio of the numbers of atoms in the two energy states at temperature  T  (in Kel-
vin) are given by Boltzmann statistics:
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N e e e
N e

 , (15.A.5)

where   231.38 10 J/KBk   is Boltzmann’s constant. Furthermore, in thermal equilibri-
um the fi eld is that of a black-body, and the spectral energy density is given by Planck’s 
blackbody radiation formula:
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c e

  . (15.A.6) 

 Combining eqs. (15.A.4)–(15.A.6), we see that 
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  . (15.A.7)

For this equation to hold, clearly we must have 

    12

21
1

B
B

  , (15.A.8)

   
3
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2 3
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A
B c

  , (15.A.9)

which are equivalent to eqs. (15.47) and (15.48).        

   15.A.1  References  
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         15.A.2  PROBLEMS    

           15.A.1     An atom in an excited state can transition to the ground state via mechanisms 
other than just stimulated and spontaneous emission; collisions with other at-
oms, for example, can cause a decay. If the lifetime due to spontaneous emis-
sion is   sp , and the lifetime due to collisions is   c , what is the effective lifetime 
of the excited state? Recall that the lifetime is the inverse of the decay rate. You 
may ignore absorption and stimulated emission.                      



         CHAPTER 16 

Quantum Fields  

    In earlier chapters we talked about the polarization states of one- and two-photon fi elds, 
and we’ve alluded to a more sophisticated treatment of the fi eld. Now it’s time to 
provide that treatment. In this chapter we will treat the electromagnetic fi eld as a fully 
quantum mechanical object. But before discussing fi elds, we’ll take a necessary digres-
sion to discuss two different ways of treating time dependence in quantum mechanics: 
the Schrödinger and Heisenberg pictures. 

      16.1    THE SCHRÖDINGER AND HEISENBERG PICTURES 
OF QUANTUM MECHANICS   

 Previously we have distinguished between two types of time dependence: implicit and 
explicit. Implicit time dependence is the natural time evolution of a system; it occurs 
even in systems for which the Hamiltonian is time independent. Explicit time depend-
ence typically means that there is a time-dependent external force acting on a system. 
We have been using the unitary time-evolution operator   Û t   to propagate the state of 
a system forward in time:

   ˆ 0t U t   . (16.1)

By placing the time dependence in the state, we have been working in the Schrödinger 
picture of quantum mechanics. 

 Consider the expectation value of the observable  A , which corresponds to the opera-
tor   ˆSA   (the subscript indicates that this is a Schrödinger-picture operator). This expecta-
tion value is

   †

ˆ

ˆˆ ˆ0 0
ˆ0 0 ,

S

S

H

A t t A t

U t A U t

A t

  (16.2)
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where we have defi ned

   †ˆ ˆˆ ˆ
H SA t U t A U t   . (16.3)

Equation (16.2) tells us that we can calculate   A t   in two ways. The fi rst is to use 
the time-independent operator   ˆSA   and the time-dependent state   t  ; this is the 
Schrödinger picture. The second is to use the time-dependent operator   ˆHA t   and the 
time-independent state   0  ; this is known as the Heisenberg picture, hence the sub-
script indicating that   ˆHA t   is a Heisenberg picture operator. Note that   ˆ 0U   is the 
identity operator, so eq. (16.3) tells us that   ˆ ˆ0H SA A  —the Schrödinger and Heisen-
berg-picture operators are the same at   0t  . A Heisenberg picture operator will always 
commute with itself  at the same time , but will not in general commute with itself at 
different times. 

 We obtain the equation of motion for a Heisenberg picture operator by differentiat-
ing eq. (16.3):

   † †ˆ ˆ ˆˆ ˆ ˆ ˆ
H S S

d d dA t U t A U t U t A U t
dt dt dt

  . (16.4)

Here we have assumed that   ˆSA   has no explicit time dependence. Using eq. (9.9), and the 
fact that   † ˆˆ ˆ 1U t U t  , this becomes
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† † † †

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ
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d iA t U t HA U t U t A HU t
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i U t HU t U t A U t U t A U t U t HU t

i H t A t A t H t

i H t A t

  .        (16.5)

This equation is known as the Heisenberg equation of motion. If there is no explicit 
time dependence to the Hamiltonian then   ˆ ˆ ˆ

H SH t H H   (see problem 16.5), and the 
Heisenberg equation of motion becomes

   ˆ ˆˆ ,H H
d iA t H A t
dt

  . (16.6) 

 Let’s look at an example. 

 EXAMPLE 16.1 
 Write down the Heisenberg equation of motion for the position operator of a harmonic 
oscillator. 

 The Hamiltonian for a harmonic oscillator is
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2

2 2ˆ 1ˆ ˆ
2 2
p

H m x
m

  , (16.7)

and it has no explicit time dependence. The Heisenberg equation for   ̂x  is thus

   

2
2 2

2

ˆ 1ˆ ˆ ˆ,
2 2

ˆ ˆ,
2

ˆ ˆ ˆ ˆ ˆ ˆ, ,
2
1 ˆ ,

pd ix m x x
dt m

i p x
m
i p p x p x p
m

p
m

  (16.8)

which looks like the classical equation of motion.  

 You may be asking yourself, “Why are we having a discussion of the Heisenberg 
picture now?” The answer is that the Heisenberg picture is the natural picture to use 
when discussing quantum fi elds, as we’ll soon see.    

   16.2    THE FIELD HAMILTONIAN   

 Let’s start with a discussion of classical free fi elds. Free fi elds exist in empty space, 
away from charges and currents. As such, Maxwell’s equations for free fi elds are (ref. 
[16.1]):

   0E   , (16.9) 

    0B   , (16.10) 

    
t

E B  , (16.11) 

    2
1

tc
B E   . (16.12)

If we take the curl of eq. (16.11), and then use a vector derivative identity and eq. 
(16.12), we see that

   
2

2

,

1 .

t

t tc

E B

E E E
  (16.13)
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Now we use eq. (16.9), and fi nd that

   
2

2
2 2

1 0
c t

E E   , (16.14)

which is the wave equation for the electric fi eld. By taking the curl of eq. (16.12), it is 
straightforward to prove that the magnetic fi eld satisfi es the same wave equation. 

 Consider the fi eld inside a cubic cavity, with sides of length  L . The purpose of the 
cavity is to allow us to use a mode expansion, and when we’re all done we can let  L  
become arbitrarily large if needed. We’ll use periodic boundary conditions for the cav-
ity, which means that the fi eld on one side of the cavity is equal to the fi eld on the 
opposite side. Here we’ll consider just a single mode, and we’ll write the electric fi eld 
of this mode as

   , ikx ikx
zt t e t er uE EE   . (16.15)

To satisfy the periodic boundary conditions we must have

   ik x L ikxe e   , (16.16)

so   2 /k m L  and  m  is an integer. Substituting eq. (16.15) into the wave equation [eq. 
(16.14)], we obtain the following equation for   tE  :

   
2

2 2
2 0t c k t

t
E E   . (16.17)

This is the equation obeyed by a simple harmonic oscillator, so the amplitude of a single-
mode electric fi eld behaves as a harmonic oscillator. The solution to eq. (16.17) is

   0 i tt eE E   , (16.18)

where   ck  . Given our expression for the electric fi eld, we can use eq. (16.11) to 
determine the magnetic fi eld, with the result being

   
1, ikx ikx

yt t e t e
c

r uE EB   . (16.19)

The Hamiltonian determines the energy, and as such is given by

   2 2
0

0

1 1, ,
2

V

H dV t tr rE B   , (16.20)

where the integral extends over the inside of the cavity, and   3V L   is the cavity volume 
(ref. [16.1], sec. 8.1). The square of the electric fi eld is

   

2

2 2 2 2 .

ikx ikx ikx ikx

i kx i kx

t e t e t e t e

t e t e t t t t

E

E E E E

E E E E E E

E E

  (16.21)
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We’re dealing with classical fi elds, and the last two terms can be combined, but we’ve 
intentionally preserved the ordering of   tE   and   tE   for reasons that will become 
more obvious soon. Integrating this over the cavity volume, we fi nd

   2
0 0

1 1,
2 2

V

dV t V t t t trE E E E E   , (16.22)

where we’ve used the fact that the integrals over the exponentials are 0. Similarly, the 
integral of the square of the magnetic fi eld yields

   

2
2

0 0

0

1 1 1 1,
2 2

1 ,
2

V

dV t V t t t t
c

V t t t t

rB E E E E

E E E E

  (16.23)

where we’ve used the fact that   2
0 01/ c  . The Hamiltonian of the fi eld is thus

   0H V t t t tE E E E   . (16.24) 

 Let’s defi ne the real quantities   X   and   P  , where

   
0

1
2

t t i t
V

E X P   . (16.25)

This means that

   * 2 2 2

0

1
4

t t t t t t
V

E E E E X P   , (16.26)

and the Hamiltonian is then

   
2

2 21
2 2

t
H t

P
X   . (16.27)

This Hamiltonian looks like the Hamiltonian for a harmonic oscillator with unit mass. 
It is formally equivalent to the Hamiltonian of a harmonic oscillator, as long as   X   and 
  P   are related as we would expect for an oscillator with unit mass:

   d
dt

X P   . (16.28)

You’ll show that this relationship does indeed hold in problem 16.9. 
 Thus, we’ve shown that the Hamiltonian for the amplitude of a single mode of the 

electromagnetic fi eld is formally equivalent to that of a simple harmonic oscillator.    

   16.3    FIELD OPERATORS   

 To treat the fi eld quantum mechanically, we assume that the behavior of each mode of 
the fi eld is equivalent to that of a quantum-mechanical harmonic oscillator. We assume 
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that the amplitude of the electric fi eld is an operator, so that the classical Hamiltonian 
[eq. (16.24)] becomes the Hamiltonian operator:

   † †
0

ˆ ˆ ˆ ˆĤ V t t t tE E E E   . (16.29)

We were careful to preserve the ordering of the fi eld amplitudes when deriving eq. 
(16.24) so that we have the correct ordering here. The fi eld operator   ˆ tE   is a Heisen-
berg picture operator. 

 The Hamiltonian of a harmonic oscillator is given by eq. (12.10):

   † 1ˆ ˆ ˆ
2

H a a   . (16.30)

Using the commutation relation

   † † †ˆ ˆ ˆ ˆ ˆ ˆ, 1a a aa a a   , (16.31)

this can be rewritten as

   † † † † †1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
2 2

H a a aa a a a a aa   . (16.32)

To establish the equivalence between the fi eld mode and the harmonic oscillator, we 
assume that the Hamiltonians in eqs. (16.29) and (16.32) are the same. For this to be 
the case we must have

   
0

ˆ ˆ
2

t a t
V

E =   . (16.33)

The quantum-mechanical equivalent of the single-mode electric fi eld in eq. (16.15) is 
thus

   

†

0

†

0

ˆ ˆ ˆ,
2

ˆ ˆ ,
2

ikx ikx
z

i kx t i kx t
z

t a t e a t e
V

ae a e
V

r u

u

E
  (16.34)

where we have used the result of problem 16.4 [eq. (16.118)] for the time dependence. 
The operator for the magnetic fi eld is the quantum-mechanical equivalent of eq. (16.19):

   †

0

1ˆ ˆ ˆ,
2

ikx ikx
yt a t e a t e

c V
r uB   , (16.35) 

 In chapter 12 we alluded to the fact that a single mode of the electromagnetic 
fi eld could be treated as a harmonic oscillator, and here we see the proof of that. 
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The operators   †â   and   ̂a  are creation and annihilation operators for the fi eld, and 
  †ˆ ˆ ˆn a a  is the corresponding photon number operator. We can rewrite the Hamilto-
nian of eq. (16.30) in terms of the number operator as

   1ˆ ˆ
2

H n   . (16.36) 

 One last set of operators that we will fi nd useful are the fi eld-quadrature-amplitude 
operators   X̂  : 

  †1ˆ ˆ ˆ
2

i iX ae a e   . (16.37)

Each value of     yields a different quadrature amplitude. The quadrature amplitudes are 
observables.   

   16.3.1    Multimode Fields   

 The modes of a fi eld are described by their wave vectors   k  and polarizations   k ; for each 
wave vector there are two orthogonal polarizations, so we label the polarization vectors 
of a multimode fi eld as   sk  , where   1, 2s  . The wave vector and the polarization must 
be orthogonal:   0skk   (see problem 16.6). The two polarizations are orthogonal as 
well:   s s ssk k  . We are assuming periodic boundary conditions in a cubic cavity, so 
the components of the wave vector satisfy

   
2

j jk m
L

,  (16.38)

where   , ,j x y z , and   jm   is an integer. For each wave vector the frequency of the fi eld 
is determined by the dispersion relation   ck k  ; note that   k k . 

 The Hamiltonian of a multimode fi eld is that of a collection of independent har-
monic oscillators (ref. [16.2], ch. 4). The total fi eld is then given by summing over the 
single-mode results obtained in eq. (16.34):

   

†

0 ,

†

0 ,

ˆ ˆ ˆ,
2

ˆ ˆ .
2

i i
s s ss

s

i t i t
s s ss

s

t a t e a t e
V

a e a e
V

k k

k r k r
k k k kk

k

k r k r
k k k kk

k

rE

  (16.39)

The corresponding magnetic fi eld is

  †

0 ,

1ˆ ˆ ˆ,
2

i i
s s ss

s

t a t e a t e
c V

k r k r
k k k k k kk

k

r u uB   . (16.40)

where   ku   is the unit vector that points along the direction of  k . Because the fi eld modes 
are independent, the operators corresponding to different modes commute: 

   †ˆ ˆ,s sssa t a tk kkk   . (16.41)     
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   16.4    FIELD STATES   

 The electromagnetic fi eld is equivalent to a collection of harmonic oscillators, so the 
states of the fi eld are harmonic oscillator states. The eigenstates of the Hamiltonian are 
the eigenstates of the number operator, which are the number states or the Fock states:

   n̂ n n n , 0,1, 2,n  .  (16.42)

A fi eld in the Fock state   n   contains exactly  n  photons. The creation and annihilation 
operators perform the following operations on the Fock states [eqs (12.28) and (12.29)]:

   †ˆ 1 1a n n n   , (16.43) 

    ̂ 1a n n n .  (16.44)

The ground state of the fi eld is   0  , which contains no photons. This state is known as 
the vacuum. 

 When describing multimode fi elds, we need to specify the state of each mode. We 
will use the following conventions for doing so. The vacuum fi eld   0   contains 0 pho-
tons in every mode:

   
,

0 0 s
s

k
k

  . (16.45)

Modes for which the state is not indicated are assumed to be in the vacuum. For ex-
ample, the state   snk   has  n  photons in mode   sk  , and no photons in any other mode:

   
,

0s s s
s
s

n nk k k
k
k

   . (16.46) 

 Once we know the state of the fi eld we can calculate probabilities of measurements 
or expectation values, as the following example indicates. 

 EXAMPLE 16.2 
 Calculate the expectation value of   Ĥ  for the vacuum. 

 We can write the Hamiltonian for a multimode fi eld as

   
,

1ˆ ˆ
2s

s

H nk k
k

  . (16.47)

Taking the expectation value of this expression in a vacuum, we fi nd

   ,

,

1ˆ ˆ0 0
2

.
2

s
s

s

H nk k
k

k

k

   (16.48) 
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 The sum over modes contains, at least in principle, modes of infi nite frequency. As 
such, the sum in eq. (16.48) diverges. This infi nite energy is known as the zero-point 
energy of the fi eld. As you can see, it’s related to the zero-point energy of the harmonic 
oscillator. While a number of divergences in quantum electrodynamics can be explained 
using a procedure known as renormalization, this one is frankly embarrassing. It may 
be plausible to introduce a high-frequency cut-off that keeps the sum in eq. (16.48) 
from diverging, but I know of no completely satisfactory way around the zero-point 
divergence. However, despite this, measurements performed on the fi eld are not 
affected by this infi nite “background” energy, as we’ll see in sec. 16.6. 

 The following example illuminates another interesting feature of the vacuum. 

 EXAMPLE 16.3 
 Calculate the expectation value and variance of the electric fi eld of the vacuum. Con-
sider just a single mode of the fi eld. 

 Using a single mode of the fi eld operator of eq. (16.39), we have for the expectation 
value:

   

†

0

0

ˆ ˆ ˆ, 0 0 0 0
2

0 0
2

0 .

i t i tt a e a e
V

V

k r k rrE

  (16.49)

It shouldn’t be too surprising that the expectation value of the fi eld of a vacuum state 
is 0. 

 The variance is given by

   

22 2ˆ , ,t tr rE E E
0

22 22 † † †

0
22 22 †

0
† †

0

0

ˆ ˆ, ,

ˆ ˆ ˆ ˆ ˆ ˆ
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0 0 1 0
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i t i t

i t i t
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V

a e a e
V
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V

V

k r k r

k r k r

r rE E

      (16.50) 
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 Note that the variance of the vacuum fi eld is nonzero! The vacuum fi eld has a mean 
of zero, but nonzero fl uctuations. This has important consequences, as we’ll see when 
discussing spontaneous emission. Other interesting effects that can be traced to the 
vacuum include the Lamb shift and the Casimir force (refs. [16.3] and [16.4]).   

   16.4.1    Coherent States   

 The coherent states    , which we discussed in sec. 12.5, are also very important fi eld 
states. The coherent states are the eigenstates of the annihilation operator

   ̂a .  (16.51)

Since the annihilation operator is not Hermitian,     can be any complex number. The 
coherent states can be written in terms of the Fock states as [eq. (12.59)]:

   
2 / 2

0 !

n

n

e n
n

  . (16.52)

The coherent states are the closest quantum mechanical equivalent to a classical fi eld 
with a constant amplitude. The fi eld emitted by a stable laser is reasonably well de-
scribed by a coherent state. 

 The probability of measuring the fi eld to contain  n  photons is   P n  , and for a fi eld 
in a coherent state     this probability is given by

   

2

2
2 / 2

2 2

!

.
!

n

n

P n n

e
n

e
n

  (16.53)

This equation represents a Poisson distribution of photon numbers. In the problems 
you’ll show that this distribution has a mean of   2n  .  Figure  16.1   displays   P n   
for coherent state fi elds with different mean numbers of photons. If   1n   the distribu-
tion peaks at   0n  , otherwise the peak is located at   n n  . If   n   is large, the distribu-
tion is approximately Gaussian.    

 The standard deviation of the photon number for a coherent state fi eld is   1/ 2n n  . 
The fl uctuations in the number of photons get larger as the average number increases, 
as would be expected. However, if we normalize the standard deviation by the mean, 
we fi nd that

   1/ 2
1n

n n
  , (16.54)

and the relative fl uctuations decrease as the mean increases. The “signal-to-noise” ratio 
is the inverse of eq. (16.54), and it improves with increasing average photon number. 
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 In the problems you’ll show that for a coherent state, the standard deviation of the 
quadrature amplitudes   X   are 1/2, independent of    . This is consistent with the results 
in eqs. (12.68) and (12.70), as it should be, because the operators   0

ˆ ˆX X   and   / 2
ˆ ˆP X   

defi ned in sec. 12.5 are merely two particular quadrature amplitudes. It is possible to 
measure quadrature amplitudes using a balanced homodyne detector (problem 16.26). 
Indeed, the measurements of the electric fi eld amplitudes   E   shown in fi g. 12.7 are 
precisely such measurements:   E X  .    

   16.4.2    Squeezed States   

 For a coherent state, the standard deviation of the quadrature amplitudes  X  and  P  are 
both 1/2. In the dimensionless units we’re using here, their uncertainty product of 1/4 
is the smallest allowed by the indeterminacy relation (problem 12.17). It can be proved 
that no classical state can have a quadrature-amplitude uncertainty of less than 1/2, 
while certain nonclassical states, called squeezed states, can. But of course the indeter-
minacy relation still applies, so if the uncertainty in  X  is less than 1/2, the uncertainty in 
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  Fig 16.1     Photon number distributions, corresponding to fi elds in coherent states with differ-
ent mean numbers of photons.   
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 P  must be greater. These states are called squeezed, because in the  X-P  plane the uncer-
tainty in  X  and  P  for a coherent state is a circle (fi g. 12.6), whereas for a squeezed state 
the circle is squeezed into an ellipse. Mathematically, squeezed states   r   are generated 
by applying the unitary squeezing operator   ̂S r   to the vacuum state   0  : 

  ˆ 0r S r   . (16.55)

The squeezing operator is

   2 †21ˆ ˆ ˆexp
2

S r r a a   , (16.56)

and  r  is referred to as the squeezing parameter. 
 You’ll examine several properties of squeezed states in the problems. You’ll show 

that the uncertainties in the quadrature amplitudes for a squeezed state are

   
1
2

rX e   (16.57) 

    1
2

rP e   . (16.58)

You’ll also show that the photon number distribution for a squeezed state contains 
only even numbers of photons. This suggests that a parametric downconversion source, 
which produces pairs of photons, could be used to generate a squeezed state. Indeed, 
parametric downconversion is one of the more widely used techniques to generate 
squeezed light. 

 Squeezed states are interesting because the fl uctuations of one quadrature amplitude 
are smaller than those for any classical state. If information can be encoded in this 
quadrature, the information can be transmitted with lower noise using squeezed light 
than it can be using ordinary laser light.     

   16.5    FULLY QUANTUM MECHANICAL ATOM-FIELD 
INTERACTIONS   

 The Hamiltonian of an atom-fi eld system consists of three parts: the Hamiltonian of 
the atom, the Hamiltonian of the fi eld, and the Hamiltonian of the interaction between 
them. We have already described the Hamiltonians of atoms and fi elds, and now we are 
interested in the interaction. To describe this interaction we will use the electric-dipole 
Hamiltonian that we used in sec. 15.3, only now we will use a quantum fi eld rather than 
a classical fi eld. The electric-dipole Hamiltonian is thus

   ˆˆ ˆ 0,EDH t td rE   , (16.59)

where we are assuming that the atom is placed at the origin. 
 The fi eld is time dependent, and we will use time-dependent perturbation theory 

to describe the interaction of the atom and the fi eld. Equations (15.22) and (15.23) tell 
us that the probability of making a transition from some initial state at time   0t   to a 
different fi nal state at time  t  is
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2

if fP t c t   , (16.60)

where

   
0

t
i tfi

f ED fi
ic t dt e H t   . (16.61)

The basis states we will use are those of the combined atom-fi eld system. We will as-
sume that only two levels of the atom are nearly resonant with the fi eld, and that the 
atom is initially in the excited state   2  , and makes a transition to the lower state   1   (see 
fi g. 15.1). As such   1 2 0/fi E E  , and eq. (16.61) becomes

   0

0

t
i t

f ED fi
ic t dt e H t   . (16.62)

We will assume that the fi eld at   0t   is   snk   ( n  photons in mode   sk  , and vacuum in 
other modes). At the moment we will not specify the fi nal state of the fi eld, and will 
designate it as   fF  . The matrix element in eq. (16.62) is thus

   

ˆˆ1, 0, 2,

ˆˆ1 2 0,

ˆ 0, ,

ED fi f s

f s

f s

H t F t n

F t n

F t n

k

k

k

d

d

d

E

E

E

  (16.63)

where   d   is the dipole-moment matrix element.   1    
 Using eqs. (16.39), (16.43), and (16.44), the fi eld matrix element in eq. (16.63) becomes

       

†

0 ,

0

0

0 ,

ˆ ˆ ˆ0,
2

1
2
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k k k k
k
k

E

  (16.64)

There are three terms in this equation. The fi rst term corresponds to absorption (anni-
hilation) of a photon in mode   sk  . The second term corresponds to emission (creation) 
of a photon in this same mode. The fi nal term is a sum, corresponding to the creation 
of a photon in one of the other modes which were initially in the vacuum. Note that 
there are no terms corresponding to annihilation of the vacuum, since these terms are 0. 

   1.     We’re using   ˆ1 2d d  , because in chapter 15 we used   ˆ2 1d d  . 
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 Substituting eqs. (16.63) and (16.64) into eq. (16.62), we fi nd that
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1
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1 1
2
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  (16.65)

Now we make the near resonance approximation; we assume that the fi eld must be 
nearly resonant with the atomic transition, which means that   0k  . With this ap-
proximation the integrand in the fi rst term of eq. (16.65) oscillates rapidly, and the inte-
gral averages to 0. Physically this says that the atom cannot make a transition from the 
upper state to the lower state by absorbing a photon—this process does not conserve 
energy. Performing the other two integrals, we are left with
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  (16.66)   

   16.5.1    Stimulated Emission   

 There are two important cases to examine. For stimulated emission, a photon is added 
to the mode already containing photons, so   1f k sF n  , which yields
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  . (16.67)

The transition probability is then
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  (16.68) 
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 For simplicity we’ll assume that mode   sk   is linearly polarized, and we’ll choose 
our  z -axis to point along its polarization direction, so   s zk u  , and

   
2

2 2
02

0

1
d sinc / 2

2
s

if z
n t

P t t
V

k k
k   . (16.69) 

 To compare the quantum result we have just obtained with the semiclassical result 
of sec. 15.3, we note that since mode   sk   contains   1snk   photons, its energy density is

   1 /sU n Vk k   . (16.70)

Substituting this into eq. (16.69) tells us that

   
2 2

2
02

0

d
sinc / 2

2
z

if
Ut

P t tk   . (16.71)

This expression is identical to that in eq. (15.38), which represents the semiclassical 
stimulated emission probability for a single atom in a monochromatic (i.e., single-
mode) fi eld.   2    

 From Eq. (16.71), the quantum calculation of the Einstein  B  coeffi cient (the stimu-
lated emission rate) proceeds in exactly the same manner as the semiclassical calcula-
tion in Sec. 15.3. The fi nal expression for the Einstein  B  coeffi cient is the same as that 
in Eq. (15.49). Thus, the fully quantum-mechanical treatment of stimulated emission 
agrees with the semiclassical treatment.    

   16.5.2    Spontaneous Emission   

 While the semiclassical model works fi ne for stimulated emission, recall that this mod-
el cannot predict the spontaneous emission rate; it predicts that there is no spontane-
ous emission. In Sec. 15.3 we obtained the spontaneous emission rate with help from 
Einstein’s thermodynamic model, not directly from the semiclassical model. As we’ll 
now see, a fully quantum-mechanical theory can directly determine the spontaneous 
emission rate. 

 Start with Eq. (16.66) and assume that   0snk  . In other words, none of the modes 
initially contain photons, and the fi eld is in a vacuum state   0  . All of the modes are now 
on an equal footing, and Eq. (16.66) becomes

   
0

0 0,

1 11
2

i t

f f s s
s

ec t F
V

d
k

k k k
kk

  . (16.72)

This is 0 unless the fi nal fi eld state   1f sF k   (i.e., the atom spontaneously emits a 
single photon into mode   sk  ), in which case

    2.     Actually, eq. (15.38) represents the semiclassical absorption probability, but in problem 15.5 you 
showed that the probability of absorption and stimulated emission are the same. 
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  . (16.73)

This is the same as eq (16.67), only with   0snk  . Thus, the probability for the atom to 
spontaneously emit a photon into mode   sk   is

   
2 22 2

0
0

sinc / 2
2if f s

tP t c t t
V k k kd   . (16.74) 

 Before going on to calculate the spontaneous emission rate, I want you to note one 
important thing. Equation (16.74) says that there is a nonzero probability that an atom 
will make a transition from the upper level to the lower level, in the absence of an 
applied fi eld. This result is different from that of the semiclassical model of sec. 15.3. 
The reason for the difference is that in the semiclassical model, if there is no applied 
fi eld, there is no mechanism by which the atom can decay—the Hamiltonian describing 
the interaction between the atom and the fi eld is 0. In the quantum calculation the inter-
action Hamiltonian is nonzero, even though the fi eld is in a vacuum state. In some sense 
the vacuum stimulates the emission of a photon (see also example 16.3). 

 Equation (16.74) gives us the probability that the atom will emit a photon into a 
particular mode. However, to fi nd the total transition probability we must sum over all 
fi nal fi eld states. The only states for which the probability is nonzero are those contain-
ing a single photon in one mode:   1f sF k  . Summing eq. (16.74) over these states 
yields

   
2 2 2

0
0

sinc / 2
2if s

s

tP t t
V k k k

k

d   , (16.75)

where we have made the substitution   s sk k  , because we no longer need the primes. 
 Now we will let the cavity become large, and compute the probability in eq. (16.75) 

by converting the sum over   k  to an integral. The wave vector   k  is 3-dimensional, so the 
integral is over   3d k , and it needs to be weighted by the density of states in   k -space, 
  kn  . The components of   k  satisfy eq. (16.38), and the allowed values for   k  are dis-
played graphically in  fi g.  16.2  . It can be seen that in   k -space the allowed modes take 
the form of a cubic lattice, with a unit-cell whose volume is   32 / L  . Each unit cell 
contains one state, so the density of states is

   3 3
1

2 / 2
V

L
kn   . (16.76)

In the limit that the cavity volume becomes large, the states in   k -space are close enough 
together to be considered continuously distributed, and the sum over   k  becomes an 
integral:

   3 3
32

Vd d
k

k k kn      . (16.77) 

 The integral over   3d k  will be done using spherical coordinates. In these coordinates, 
the unit vector along   k  is
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   sin cos sin sin cosx y zku u u u   . (16.78)

The two polarization vectors must be orthogonal to   ku   (see problem 16.6) and to each 
other. For simplicity we will assume that the polarization vectors are linear, and suit-
able polarization vectors are (problem 16.17):

   1 cos cos cos sin sinx y zk u u u   , (16.79) 

    2 sin cosx yk u u   . (16.80)

Since the direction of   d  is arbitrary, we can choose   d zud =  . Using eqs. (16.79) and 
(16.80), we can explicitly perform the sum over polarization in eq. (16.75), with the 
result that

   
2 22 2 2 2

1 2d d sins z z
s

k k ku ud   . (16.81)

Combining eqs. (16.75), (16.77), and (16.81), we fi nd
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     (16.82)

We can perform the     and     integrals in eq. (16.82). We can also use the fact that 
  k ck  to convert the integral over  k  to an integral over   k . The net result is

   
2 2

3 2
02 3

0 0

d
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6if k k k
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P t d t
c

  . (16.83) 
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  Fig 16.2     Each dot represents an allowed mode for a cubic cavity with periodic boundary 
conditions [eq. (16.38)].   
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 Now we can once again use some of the techniques we used in the semiclassical 
calculation of sec. 15.3. For times longer than several oscillation periods of the fi eld, 
the function   3

k  is very broad compared to the function   2sinc  , so   3
k  is approxi-

mately constant over the width of   2sinc  . We can thus evaluate   3
k  at the peak of 

  2sinc   (at   0k  ), and factor it outside of the integral, yielding

   
2 3 2

0 2
02 3

0 0

d
sinc / 2

6if k k
t

P t d t
c

  . (16.84)

As in eq. (15.41) the integral is   2 / t  , and the transition probability is

   
2 23 2 3

0 0
2 3 3

0 0

d d2
6 3if

t t
P t

tc c
  . (16.85)

The transition rate is the time derivative of this probability, which is

   
2 3

0
213

0

d
3if

dR P t A
dt c

  . (16.86)

This rate is equal to the Einstein  A  coeffi cient that we calculated previously [eq. 
(15.50)], as it should be. The difference is that here we have calculated it from fi rst 
principles, rather than from a simplifi ed model. The correct prediction of the spontane-
ous emission rate is one of the great triumphs of quantum fi eld theory. 

 The spontaneous emission rate in eq. (16.86) assumes that the density of states is con-
stant [eq. (16.76)], which is appropriate for an atom in free space (a cavity with   V  ). 
However, it is possible to modify the density of states by placing the atom in an appropriate 
cavity, typically a small cavity with high refl ectivity mirrors. Such cavities can either 
enhance or inhibit spontaneous emission. For example, spontaneous emission from an 
atom occurs at frequencies near the atomic resonance. If this frequency is not supported by 
the cavity, spontaneous emission is inhibited, and its rate decreases (ref. [16.5], chapter 10).     

   16.6    QUANTUM THEORY OF PHOTOELECTRIC DETECTION   

 We can apply what we’ve learned about the interaction of a quantum fi eld with atoms to 
build a fully quantum-mechanical theory of photoelectric detection. This will general-
ize the semiclassical theory we discussed in sec. 15.4. The complete elaboration of a 
quantum theory of photoelectric detection is beyond the scope of this text, but here we 
can discuss some of its basic features.   3    

 The quantum model mimics the semiclassical model of sec. 15.4 (pictured in fi g. 
15.5). The atom is initially in the ground state   1  , and the initial fi eld state is   iF  . We’d 
like to fi nd the probability that the atom makes transition to an unbound state with 
positive energy   E  , which constitutes a photodetection; the fi nal state of the fi eld is 
  fF  . We will use the electric-dipole Hamiltonian to describe the interaction of the fi eld 
with the detector. The matrix elements of this Hamiltonian are

    3.     For a full theory see ref. [16.3], chapter 14. 
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The fi eld operator can be written as

   ˆ ˆ ˆ, , ,t t tr r rE E E  , (16.88)

where

   
0 ,

ˆ ˆ,
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i
s s
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t a t e
V
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k

rE   , (16.89) 

    
†ˆ ˆ, ,t tr rE E   . (16.90)

 ˆ , trE   and   ˆ , trE   are often referred to as the positive and negative frequency 
parts of the fi eld. We are interested in photodetection, during which a photon is ab-
sorbed. The part of the fi eld that contributes to absorption is   ˆ , trE  , since it is the 
part containing annihilation operators (see problem 16.21).   4    Retaining just this relevant 
part of the fi eld in eq. (16.87), we learn that

   ˆ , .ED fi f iH t F t FrE   (16.91) 

 In perturbation theory, the probability   ifP t   that the system will make a transition 
from the initial to the fi nal state will be proportional to the square magnitude of the 
matrix element of the electric-dipole Hamiltonian:

   
22 ˆ ,if ED fi f iP t H t F t FrE   . (16.92)

When performing photoelectric detection, what we actually measure is the free elec-
tron, not the fi eld itself. To fi nd the total detection probability   P t   we must sum over 
all possible fi nal states of the fi eld, which means that
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  (16.93)

    4.     Terms involving   ˆ , trE   contain creation operators and correspond to the emission of a photon. 
During photodetection, only terms involving the absorption of a photon conserve energy. See the related 
discussion following eqs. (16.64) and (16.65). 
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Here we have used the fact that the fi eld states form a complete set, so the sum over 
states in the third line of eq. (16.93) is equal to the identity operator. We can defi ne the 
intensity operator as

   ˆ ˆˆ , , ,I t t tr r rE E   , (16.94)

which means that

   ˆ ,P t I tr   . (16.95)

Equation (16.95) tells us that the detection probability is proportional to the expecta-
tion value of the intensity. A full calculation yields the result that the detection prob-
ability is linear in time (as it was semiclassically), which means that the detection rate 
is constant. 

 In the laboratories at the end of this book we are measuring individual photons. The 
quantity we are frequently interested in is the probability that a single photon will be 
measured in the time interval between   t  and   t t  ,   ,P t t  , for small   t . Since the rate 
of detection is constant, this probability is linearly proportional to   t . Thus, we can write

   ˆ, ,P t t I t tr   , (16.96)

where     is a measure of effi ciency of the detector. Compare this to the semiclassical 
result in eq. (15.56). 

 For a single-mode fi eld we know that

   
0 0

ˆ ˆ ˆ,
2 2

i tit a t e ae
V V

k rk rrE   . (16.97)

and

   †

0

ˆ ˆˆ ˆ ˆ ˆ, , ,
2

I t t t a a n
V

r r rE E   . (16.98)

For a single mode fi eld, the intensity operator is proportional to the number operator for 
the fi eld mode. The detection probability is then proportional to the expectation value 
of the photon number, which makes intuitive sense. Note that the intensity operator 
does NOT contain the zero-point contribution that the fi eld Hamiltonian does. Thus, 
photoelectric measurements of the fi eld are not sensitive to the zero-point energy.    

   16.7    BEAM SPLITTERS   

 Beam splitters are important optical elements, so we need to describe how fi elds behave 
when they encounter a beam splitter. Consider the experimental arrangement shown in 
 fi g.  16.3  , where two fi elds are incident on the input ports of a beam splitter, and two 
fi elds emerge from the output ports. We’ll assume that all fi elds are linearly polarized 
in the same direction. We know that the operators corresponding to the amplitude of the 
individual fi eld modes satisfy the commutation relations
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   † † † †
1 2 3 41 2 3 4ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , 1a a a a a a a a   . (16.99)

Furthermore, since the input modes and the output modes are separately measurable 
and independent, we know that their fi eld operators must commute:

   † †
1 32 4ˆ ˆ ˆ ˆ, , 0a a a a      . (16.100) 

 The fi eld refl ection and transmission coeffi cients for mode 1 are   1r   and   1t  , while 
those of mode 2 are   2r   and   2t  . Thus, the transformation from the input to the output 
modes is

   3 1 1 2 2ˆ ˆ ˆa r a t a  , (16.101) 

    4 1 1 2 2ˆ ˆ ˆa t a r a  . (16.102)

Assuming that the refl ection and transmission coeffi cients are real, the commutation 
relations yield the following:

   † † † 2 2
3 1 1 2 2 1 2 1 23 1 2ˆ ˆ ˆ ˆ ˆ ˆ, , 1a a r a t a r a t a r t   (16.103) 

    † † † 2 2
4 1 1 2 2 1 2 1 24 1 2ˆ ˆ ˆ ˆ ˆ ˆ, , 1a a t a r a t a r a t r   (16.104) 

    † † †
3 1 1 2 2 1 2 1 1 2 24 1 2ˆ ˆ ˆ ˆ ˆ ˆ, , 0a a r a t a t a r a r t r t   . (16.105)

These relationships are sometimes referred to as the reciprocity relations, and you will 
verify in the problems that they are satisfi ed if

   1 2r r r ,  1 2t t t ,  2 2 1r t  . (16.106)

You can compare these relationships to those we determined classically using energy 
conservation [eq. (2.A.4)]. Combining eqs. (16.101), (16.102), and (16.106), the an-
nihilation operators for the output fi eld modes can be written as

   3 1 2ˆ ˆ ˆa ra ta  , (16.107) 

  

1â

3â

4â

2â

    

  Fig 16.3     Input and output modes of a beam splitter.   
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    4 1 2ˆ ˆ ˆa ta ra  . (16.108)

This transformation for the fi eld operators allows us to calculate the expectation values 
of quantities corresponding to the output fi elds, given the state of the input fi elds, as 
seen in the following example. 

 EXAMPLE 16.4 
 A beam splitter as refl ection and transmission coeffi cients   0.7r  ,   0.3t  , and the 
state of the fi elds incident on it is 1 210 0   . Calculate the expectation value of the 
number of photons in mode 3.

   

†
3 33

† †
1 21 2

2 2 † †
1 2 1 22 11 2 1 2

ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ10 0 10 0

0.7 10 0 0 0
7 .

n a a

ra ta ra ta

r n t n rta a rta a   (16.109)

Since there were 10 photons incident on a beam splitter with a refl ectivity of 70%, it’s 
not surprising that an average of seven photons would be refl ected. Remember, however, 
that photons are randomly refl ected or transmitted by the beam splitter. What we have 
calculated here is the expectation value, not the number that will result on every trial.  

 The calculation in example 16.4 was performed in the spirit of the Heisenberg pic-
ture: The fi eld operators were transformed, and the expectation value was calculated 
using the initial state of the system. Alternatively, we can calculate how the states trans-
form on the beam splitter, and thus determine the output states given the input states. 
For general states this can be a diffi cult proposition, but for some simple cases it is 
straightforward. 

 We begin by inverting eqs. (16.107) and (16.108) to obtain

   1 3 4ˆ ˆ ˆa ra ta  , (16.110) 

    2 3 4ˆ ˆ ˆa ta ra  . (16.111)

We can also write this as:

   1 3

2 4

ˆ ˆ
ˆ ˆ
a ar t
a at r

  , (16.112)

which is the transformation from the outputs to the inputs. We can create Fock states on 
the input modes by applying   †

1̂a   and   †
2â   to the vacuum, and we can see how these modes 

are transformed by using eq. (16.112). For example, if we want to know how a fi eld 
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containing a single photon in mode 1 is transformed by the beam splitter, we apply   †
1̂a   

to the vacuum and use eq. (16.110) [or eq. (16.112)] to fi nd that

   
† † †
1 3 4

1 2 3 4 3 4

ˆ ˆ ˆ0 0 ,

1 0 1 0 0 1 .

a ra ta

r t
  (16.113)

This says that if a photon in mode 1 is incident on a beam splitter, the system is trans-
formed into a superposition state of the photon being in modes 3 and 4. 

 Referring back to  fi g.  16.3  , we might be tempted to completely ignore one of the 
input modes if it contains vacuum. However, as you’ll prove in problem 16.23, it is 
necessary to include all of the fi eld operators in the beam splitter transformation [eqs. 
(16.107) and (16.108)]. If vacuum is present in one of the modes, that is accounted for 
by the state of the fi eld.   

   16.7.1    The Mach-Zehnder Interferometer   

 A Mach-Zehnder interferometer, with a single photon incident, is shown in  fi g.  16.4  . 
We can use the techniques described above to calculate the probabilities that the photon 
will be detected at either of the interferometer output ports (5 or 6).    

 Assume that both beam splitters are 50/50, so   1/ 2r t  . In  fi g.  16.4   the fi eld of 
mode 4 is phase shifted relative to that of mode 3. Since the fi eld operator is propor-
tional to the annihilation operator, phase shifting the fi eld is equivalent to phase shifting 
the annihilation operator:   4 4ˆ ˆ ia a e  . The transformation corresponding to the interfer-
ometer consists of a beam splitter, a phase shift on one beam, then another beam split-
ter; using eq. (16.112) this is
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  Fig 16.4     A Mach-Zehnder interferometer.   
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so

   1 5 6
1ˆ ˆ ˆ1 1
2

i ia a e a e   . (16.115)

Assuming that a single photon is incident in mode 1, the state of the fi elds on the output 
can be calculated as:

   

† † †
51 6

1 2 5 6 5 6

1ˆ ˆ ˆ0 1 1 0
2
11 0 1 1 0 1 0 1 .
2

i i

i i

a a e a e

e e
  (16.116)

The probability that the photon leaves the interferometer through mode 5 is then

   
2

5
1 1 11 1 2 2cos 1 cos
2 4 2

iP e   . (16.117)

This compares favorably with the classical intensity leaving this port of the interferom-
eter [eq. (2.A.9)]. 

 By adjusting the relative phase of the arms of the interferometer, the photon can be 
made to emerge in mode 5, or in mode 6, or in a superposition state of both modes. 
Detecting the photon collapses the state, and we fi nd that the photon is in either mode 
5 or mode 6, but not both.       
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         16.9  PROBLEMS    

           16.1     Find the Heisenberg equation of motion for the momentum of a harmonic oscil-
lator. Compare this equation to its classical equivalent.  

      16.2     Find the Heisenberg equations of motion for the position and momentum of a 
free particle. Compare these equations to their classical equivalents.  

      16.3     A spin-1/2 particle is placed in a uniform magnetic fi eld that points in the  z -
direction. At   0t   the spin of the particle points along the positive  x -axis. Use 
the Heisenberg equations of motion to fi nd   xS t  ,   yS t   and   zS t  . Compare 
your results to those obtained in sec. 9.4.  

      16.4*     Use the Heisenberg equation of motion to show that the time dependence of the 
annihilation operator is

   ̂ ˆ ˆ0 i t i ta t a e a e   . (16.118)  

      16.5     Show that if there is no explicit time dependence to the Hamiltonian, then 
  ˆ ˆ ˆ

H SH t H H  .  
      16.6*     Show that if   0, it e k rA r A  , where   0A   is independent of  r , then   iA k A . 

Given this, what do Maxwell’s equations say about the relative directions of  k  
and   , trE  ? Because of this,   , trE   is said to be transverse. [Note that   , trB   
is also transverse].  

      16.7     Prove that eqs. (16.15) and (16.18) constitute a solution to the wave equation.  
      16.8     Verify eq. (16.19).  
      16.9     Verify eq. (16.28).  
      16.10     Calculate the expectation value and variance of the electric fi eld operator for a 

single-mode fi eld in a Fock state.  
      16.11     Calculate the expectation value of the electric fi eld operator for a single-mode 

fi eld in a coherent state.  
      16.12     Calculate the expectation value and standard deviation of   X   for a coherent 

state fi eld. How do your answers depend on    ?  
      16.13     Calculate the mean and standard deviation of the photon number, for a fi eld in 

a coherent state.  
      16.14     The Baker-Hausdorf lemma states that for any two operators   Â  and   B̂ ,

   
ˆ ˆ 1ˆ ˆ ˆˆ ˆ ˆ ˆ, , ,

2!
A Ae Be B B A B A A   . (16.119)

  Use this lemma to show that the squeezing operator transforms the creation and 
annihilation operators as:

   † †ˆ ˆˆ ˆ ˆcosh sinhS r aS r a r a r   , (16.120) 

    † † †ˆ ˆˆ ˆ ˆcosh sinhS r a S r a r a r  . (16.121)  

      16.15     Use the fact that   ̂S r   is unitary, and the results of the previous problem, to 
verify eqs. (16.57) and (16.58).  
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      16.16     Prove that the photon number distribution   P n   for a squeezed state contains 
only even numbers of photons. Note: you don’t need to explicitly determine 
  P n   to accomplish this.  

      16.17     For a fi eld with   zku u  , assume that   1 xk u   and   2 yk u  .
  (a) Show that these assumptions are consistent with the results of problem 16.6.
  (b)  Rotate each of these vectors fi rst by     about the  y -axis, and then by     about 

the  z -axis. Show that this procedure yields vectors that are consistent with 
eqs. (16.78)–(16.80).  

      16.18*     Calculate the expectation value and variance of the intensity operator for a fi eld 
in a vacuum state. Compare them to the expectation value and variance of the 
fi eld.  

      16.19     Calculate the expectation value and variance of the intensity operator for a single-
mode fi eld in a Fock state.  

      16.20     Calculate the expectation value and variance of the intensity operator for a single-
mode fi eld in a coherent state.  

      16.21*     Starting from eqs. (16.61) and (16.87), calculate the fi nal state amplitude   fc t   
for photoelectric detection. Show that

   0

0

ˆˆ 1 ,
t

i t
f f i

ic t dt e E F t Fd rE   . (16.122)

  The important thing here is that the negative frequency part of the fi eld does not 
contribute.  

      16.22     Verify eq. (16.106).  
      16.23*     Suppose that mode 2 in  fi g.  16.3   contains vacuum. The temptation is to com-

pletely ignore it, so the beam splitter transformation of eqs. (16.107) and 
(16.108) becomes   3 1ˆ ˆa ra   and   4 1ˆ ˆa ta  . Show that under this transformation the 
output modes do not satisfy the proper commutation relationships.  

      16.24     Two photons are incident on one port of a beam splitter, and vacuum is incident 
on the other. What is the output state?  

      16.25*     One photon is incident on one port of a 50/50 beam splitter, and another photon 
of the same frequency is incident on the other port at the same time. What is 
the output state? What is the probability that one photon will emerge from each 
output port? An experiment observing this behavior is described in ref. [16.6].  

      16.26*     In a balanced homodyne detector ( fi g.  16.5  ) signal and reference fi elds are 
incident on the input ports of a 50/50 beam splitter, and the fi elds emerging 
from the beam splitter are measured with photodetectors.   5    The detector di-
rectly measures the difference of the number of photons striking each detector 
  12 1 2ˆ ˆ ˆn n n  . Show that if the reference fi eld is in a large-amplitude coherent 
state,   i

R R
e  , the measured difference number is proportional to the 

quadrature fi eld amplitude   X̂   of the signal fi eld. The proportionality constant 

    5.     It’s referred to as homodyne detection because the signal and reference fi elds are of the same fre-
quency. In heterodyne detection the fi elds have different frequencies. 
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can be determined, yielding a measurement of   X̂  . Adjusting the reference fi eld 
phase     will change which quadrature amplitude is measured. (Hint: Take the 
expectation value of   12n̂   in state   R . This leaves an operator that acts only on 
the signal fi eld.)         

  

Sâ

1â

2â

Râ

12n̂     

  Fig 16.5     A balanced homodyne detector.   



         COMPLEMENT 16.A      

  Second-Order Coherence 
and the Grangier Experiment   

 Lab 2 describes an experiment to measure the degree of second-order coherence   2 0g   
for two different fi eld states: a conditionally prepared single-photon state, and a classi-
cal state. There we show that for classical fi elds we must have   2 0 1g  , while for the 
single-photon state we expect   2 0 0g  . Here we’ll derive a quantum-mechanical 
expression for   2 0g  , valid for any fi eld state. 

 The basics of the experimental arrangement are shown in  fi g.  16.A.1  . The signal 
fi eld is incident on a beam splitter in mode  I , and mode  V  contains vacuum. The trans-
mitted and refl ected fi elds impinge on detectors  T  and  R . In sec. 16.6 we described the 
detection of a quantum fi eld using a single detector. Here we will generalize those 
results to two detectors. We will assume that the fi elds are linearly polarized, and won’t 
explicitly write the fi elds as vectors.    

 We are interested in the probability that a single photon is detected at  T  at time   1t  , 
and a second photon is detected at  R  at time   2t  . For the sake of defi niteness we will 
assume that detector  T  fi res fi rst, so   1 2t t  . The two-detector equivalent of eq. (16.92) is

   
2

1 2 2 1
ˆ ˆ,TR f iR TP t t F t t FE E   . (16.A.1)

  

Îa

Râ

Tâ

Vâ

    

  Fig 16.A.1     The experimental arrangement for measuring   2g 0  . The fi eld in mode  I  (the inci-
dent fi eld) is the signal fi eld, while mode  V  contains vacuum.   
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Note the ordering of the operators: Because the detection at  T  occurs fi rst, the  operator 
for the positive-frequency part of the fi eld at that detector,   1

ˆ
T tE  , is applied to the 

initial fi eld state   iF   fi rst. Once again, we are not interested in the fi nal state of the 
fi eld, only in the state of the detectors. We can thus sum over all possible fi nal fi eld 
states, obtaining

  

2

1 2 2 1

†

2 1 2 1

1 2 2 1

1 2 2 1

1 2 2 1

ˆ ˆ,

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ .

TR f iR T
Ff

i f f iR T R T
Ff

i f f iT R R T
Ff

i f f iT R R T
Ff

i iT R R T

P t t F t t F

F t t F F t t F

F t t F F t t F

F t t F F t t F

F t t t t F

E E

E E E E

E E E E

E E E E

E E E E

  (16.A.2)

Here we have used the fact that the fi eld states are a complete set, so the sum over fi -
nal states is the identity operator. The ordering of the operators in eq. (16.A.2) is once 
again important. The adjoint operation reverses the order of the operators, and as such 
the fi eld operators corresponding to the fi rst detection (at  T ) are next to the state of the 
initial fi eld on both the left and right ends of this expression. 

 Recall that the positive frequency part of the fi eld contains annihilation operators, 
while the negative frequency part contains creation operators. Thus, in eq. (16.A.2) 
all of the creation operators lie to the left of all of the annihilation operators. This 
ordering of the operators is called “normal ordering.” Equation (16.A.2) is correct as 
written, but it is possible to make it look more reminiscent of the corresponding clas-
sical expression by reordering the operators. First, we use two colons,   : : , to denote 
an operation in which the operators between the colons are placed in normal order, 
by  disregarding  commutation relations. By this we mean that   † †ˆ ˆ ˆ ˆa a aa  , but 
  † † †ˆ ˆ ˆ ˆ ˆ ˆ: : : :a a aa a a . Second, we introduce the time-ordering operation   T   to indicate 
that creation operators (negative frequency fi elds) should be ordered with increasing 
time from left to right, while annihilation operators (positive frequency fi elds) should 
be ordered with increasing time from right to left; once again, this ordering is done 
by disregarding commutation relations. Using these operations, we can rewrite eq. 
(16.A.2) as

   1 2 2 2 1 1

2 1

ˆ ˆ ˆ ˆ, : :

ˆ ˆ: : ,

TR R R T T

R T

P t t t t t t

I t I t

T E E E E

T
  (16.A.3)
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where   ̂I t   is defi ned in eq. (16.94). Analagous to eq. (16.96), we can write the joint 
probability that we will detect a photon at  T  between   1t   and   1 1t t  , and another photon 
at  R  between   2t   and   2 2t t   as

   1 1 2 2 2 1 1 2
ˆ ˆ, ; , : :TR T R R TP t t t t I t I t t tT   . (16.A.4) 

 Now we are ready to defi ne the degree of second-order coherence as   6 

     
2 12

1 2
2 1

ˆ ˆ: :
,

ˆ ˆ
R T

R T

I t I t
g t t

I t I t

T
  . (16.A.5)

There is no need to place symbols denoting normal ordering on the expectation values 
in the denominator, because the intensity operators as defi ned are already normally or-
dered. A fi eld is said to be stationary if its statistics are independent of time. If this is the 
case, then the degree of second-order coherence can depend only on the time difference 
between the measurements, so for stationary fi elds

   2
ˆ ˆ: :

ˆ ˆ
R T

R T

I t I t
g

I t I t

T
  . (16.A.6)

We are most interested in   0 , so all times are the same, and we can simplify our 
expression to

   2
ˆ ˆ: :

0
ˆ ˆ

R T TR

R TR T

I I P
g

P PI I
  . (16.A.7)

Here we have used eqs. (16.96) and (16.A.4) to write   2 0g   in terms of detection 
probabilities, and we’ve assumed that the time intervals   1 2t t t  are all the same. 
Note that the detector effi ciencies cancel. In eq. (16.A.7)   TRP   is the probability of de-
tecting photons at both  T  and  R  (within a coincidence window of   t ), while   TP   and 
  RP   are the probabilities of detecting individual photons at the two detectors. Equation 
(16.A.7) agrees with our discussion in lab 2. We can use eq. (16.98) to rewrite (16.A.7) 
in terms of either number operators, or creation and annihilation operators, as

   
† †

2
† †

ˆ ˆ ˆ ˆˆ ˆ: :
0

ˆ ˆ ˆ ˆ ˆ ˆ
R TT RR T

R T R TR T

a a a an n
g

n n a a a a
  . (16.A.8) 

 So far, we have written   2 0g   in terms of the fi elds at the detectors, with no refer-
ence to the fi eld incident on the beam splitter. We can use eqs. (16.107) and (16.108) to 
rewrite the fi eld operators at the detectors in terms of the fi eld operators incident on the 
beam splitter as

    6.     See ref. [16.A.1], sec. 4.12. 
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   ̂ ˆ ˆR I Va ra ta   , (16.A.9) 

    ̂ ˆ ˆT I Va ta ra   . (16.A.10)

Now let’s use the fact that the fi eld in mode  I  is in an arbitrary state    , and the fi eld 
in mode  V  is in a vacuum state   0  . Using eqs. (16.A.9) and (16.A.10), the numerator 
of eq. (16.A.8) becomes

  

† † † † † †

† † † †

† †

2 2 † †

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 0

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ .

R T I V I VT R I V I V

I V I VI V I VI V I V

I II II I

I II I

a a a a ta ra ra ta ra ta ta ra

ta ra ra ta ra ta ta ra

ta ra ra ta

t r a a a a

 

Here the vacuum fi eld operators have been eliminated, and the expectation value is 
taken using only the state of the incident fi eld mode  I . Similarly, the expectation values 
in the denominator of eq. (16.A.8) become

      † 2 †ˆ ˆ ˆ ˆR IR Ia a r a a   , (16.A.12) 

    † 2 †ˆ ˆ ˆ ˆT IT Ia a t a a   . (16.A.13)

Using eqs. (16.A.11)–(16.A.13), the degree of second-order coherence can be written 
in terms of operators corresponding to the incident fi eld as

   
† † 2

2
2 2†

ˆ ˆ ˆ ˆ ˆ: :
0

ˆˆ ˆ

I I II I

III

a a a a n
g

na a
  . (16.A.14) 

 Now we are in a position to calculate   2 0g   for different states of the incident fi eld. 
For a fi eld in a single-photon state we have

   
† †

2 † † † †
2†

ˆ ˆ ˆ ˆ1 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 1 1 1 0 0

ˆ ˆ1 1
I II I

I I II I I I
II

a a a a
g a a a a a a a

a a
  , (16.A.15)

which is consistent with what we would expect from lab 2. The fi rst measurement 
of   2 0g   for a single-photon state was performed by Grangier and coworkers (ref. 
[16.A.2]). 

 The more a fi eld fl uctuates, the larger   2 0g   should be. Thus, we would expect a 
constant-amplitude classical wave to achieve the lowest classically allowed value for 
  2 0g  . Recall that coherent states are the closest quantum analog of a classical 
electromagnetic waves with a constant amplitude, and for a coherent state we have

(16.A.11)



 414   •  Q U A N T U M  M E C H A N I C S

   
† †

2
2 2†

ˆ ˆ ˆ ˆ
0 1

ˆ ˆ
I II I

II

a a a a
g

a a
  . (16.A.16)

This result is independent of the amplitude of the coherent state; even for weak coher-
ent states, whose mean average photon number is much less than one, we still have 
  2 0 1g  .   7    This is consistent with the classical inequality   2 0 1g  , described in lab 2.        

   16.A.1  References  
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 [16.A.2] P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrela-
tion effect on a beam splitter: A new light on single-photon interferences,” Europhys. Lett. 
 1 , 173 (1986). 

         16.A.2  PROBLEMS     

           16.A.1     Calculate   2 0g   for a fi eld in the Fock state   n   (  1n  ). Discuss the lim-
its of large and small  n , and compare your answer to the classical inequality 
  2 0 1g  .              

    7.     A weak coherent state of this sort can be obtained by attenuating the output of a laser.  



         CHAPTER 17 

Quantum Information  

    In this chapter we’ll think about the information content of quantum systems. We’ll 
explore questions such as: How can we represent information in a quantum system? 
How can we transmit quantum information from one place to another? How can we 
process quantum information? The goal here is to get you started with the basics; after 
that, you can continue your study of these topics in a more advanced text, such as refs. 
  [17.1]  and  [17.2]  . 

      17.1    QUBITS AND EBITS   

 Classical information can be represented as binary bits: 0’s and 1’s. Standardizing the 
representation of information as bits makes it easier to transport and process that infor-
mation. For example, all of the information in your computer is stored and processed 
as bits. Bits are also used to transfer information from one computer to another. Com-
munication via bits is accomplished over a classical channel. 

 In quantum mechanics any two orthogonal states can be used to encode bits. For 
example, the polarization state   H   could signify 0, while   V   signifi es 1. A bit of infor-
mation stored in this manner is known as a qubit (for quantum-bit, a term coined by 
Benjamin Schumacher). We will refer to our qubit states as   0   and   1  . This notation is 
generic, and can refer to a large number of different physical systems, such as polariza-
tion states, spin states, or atomic states. Communication via qubits is accomplished 
over a quantum channel. 

 At fi rst it may seem that there is little difference between a classical bit and a 
qubit, but that turns out to be far from true. At any instant in time a classical bit can 
represent either 0 or 1, but not both. However, as we’ve seen many times before, 
quantum systems can exist in superposition states. For example, the polarization state 
  + = ( ) +( )45 1 2/ H V   is a superposition of    H   and   V   states. In our generic nota-
tion we have



 416   •  Q U A N T U M  M E C H A N I C S

   ′ = +( )0 1
2

0 1    , (17.1)

  ′ = −( )1 1
2

0 1   . (17.2)

A qubit in either of these states simultaneously signifi es  both  0  and  1, a property re-
ferred to as quantum parallelism. As we’ll see, quantum parallelism can give quantum 
information processing using qubits an advantage over classical information process-
ing using bits. 

 Suppose that Alice and Bob each have a qubit, and these qubits are entangled. There 
are four two-qubit entangled states that we will fi nd useful, and they are known as the 
Bell states:

   φ± = ±( )
AB A B A B

1
2

0 0 1 1   (17.3)

   ψ± = ±( )
AB A B A B

1
2

0 1 1 0   (17.4)

The Bell states are orthonormal, and form a basis for a two-qubit system (see problem 
8.6). A measurement performed in the Bell-basis is known as a Bell measurement. 

 A pair of entangled qubits, shared by separated parties, is known as an ebit. If Alice 
and Bob have a quantum channel, they can share an ebit, which is a resource that they 
can use to perform tasks that are not allowed by classical physics.    

   17.2    QUANTUM CRYPTOGRAPHY   

 In modern society it’s important to be able to transmit information from one place to 
another securely. At present, nearly all secure communication is done using classical 
cryptographic protocols such as the RSA (Rivest, Shamir, and Adleman) public-key 
encryption scheme. The security of these schemes is based on the reasoned belief that 
certain computational problems are “diffi cult,” which means that the computing re-
sources needed for an eavesdropper to decode the message are unreasonably large. In 
this section we’ll discuss quantum cryptography, which can be proven to be completely 
secure (in principle) against an eavesdropper’s attack. First, however, we’ll discuss 
some background on cryptography in general.   

   17.2.1    Cryptography   

 In cryptography we refer to three different objects: the plaintext, the key, and the 
ciphertext. If Alice wants to send a message to Bob, the actual message she wants to 
send is the plaintext. Modern communication is done electronically, so the plaintext is 
encoded as a series of binary bits. Alice encrypts the plaintext with the key, which is 
another set of binary bits. The encrypted message is known as the ciphertext, and this 
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is what she transmits to Bob. Bob has a copy of the key, which he uses to decrypt the 
ciphertext, and regenerate the plaintext. 

 For example, suppose Alice wants to send the initials MB to Bob. The standard 
ASCII encoding scheme assigns one byte (eight bits) to each letter, so Alice needs to 
send 16 bits to Bob. She uses a key that is also 16 bits long, and produces the ciphertext 
by performing the XOR (exclusive-or,   ⊕ ) operation on the plaintext and the key. The 
XOR operation yields 1 if either, but not both, of the input bits are 1, and it yields 0 
otherwise. Thus, Alice performs:

   
plaintext:

key:

M B

0100110101000010
010001001110101⊕ 11
0000100110101001ciphertext: .

  (17.5)

The key is assumed to be perfectly random, so the ciphertext is also perfectly random; 
in the absence of the key, there is no way to recover the plaintext from the ciphertext. 
But Bob has a copy of the key, so he performs the XOR operation on the ciphertext and 
the key to reconstruct the plaintext:

   
ciphertext:

key:
plaintext:

0000100110101001
0100010011101011⊕
00100110101000010

M B
.
  (17.6) 

 This message transmission is provably secure from attacks by an eavesdropper, Eve, 
under a few assumptions. The most obvious is the assumption that Eve does not have a 
copy of the key. The second assumption is that the key is purely random, and consists 
of at least as many bits as the original plaintext. The last assumption is that the key is 
used only once, and then discarded. 

 Classically, the most diffi cult part of this procedure is sharing the key. Alice and Bob 
must have copies of the key, and they need to be sure that Eve does not. Standard elec-
tronic transmission of the key is no good, because it’s always possible that Eve will 
intercept a copy. One way to eliminate this possibility is for Alice and Bob to meet face-
to-face, share the key, and then go their separate ways. They then need to keep their 
copies of the key secure. Once all the bits in the key have been used they must meet 
again to share another key, which is inconvenient.    

   17.2.2    Quantum Key Distribution   

 Quantum mechanics solves the problem of key generation and distribution. It allows 
Alice and Bob to remotely share a perfectly random key, and to ensure that Eve does not 
have a copy of it. This fact was demonstrated by Charles Bennett and Gilles Brassard in 
1984, using an encryption scheme that is now known as BB84 [17.3]. 

 First, Alice uses a quantum random number generator to create the key. This random 
number generator consists of a stream of individual photons incident on a 50/50 beam 
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splitter. If a photon is transmitted it represents 0, while if it is refl ected it represents 1. 
A key generated in this manner is perfectly random. 

 As shown in  fi g.  17.1  , Alice transmits the key to Bob by sending him qubits. She 
uses two different bases to send the information: the 01-basis, or the   ′ ′0 1  -basis [eqs. 
(17.1) and (17.2)]. For each qubit she sends, Alice randomly chooses which basis to use 
(she uses her quantum random number generator to make the choice). At the receiving 
end, for each qubit Bob randomly decides which basis to perform his measurement in, 
and sets his measurement apparatus appropriately.    

 Alice and Bob can only be certain that they agree about the information contained 
in each qubit if they are using the same bases. For example, if Alice sends   ′0   but Bob 
measures in the 01-basis, he has a 50% chance of measuring   1  , which would result in 
an incorrect bit in his key. To ensure that they are using the same basis, after the meas-
urements are completed, Bob broadcasts over a public, classical channel which basis he 
used for each measurement, and Alice responds over the same channel telling him 
whether he was correct or not. They will both be in the same basis 50% of the time, and 
they keep only those bits of the key; they discard the bits in which they used different 
bases. In order to protect the key itself, they publicly broadcast only the bases that they 
used, not which bit value was sent or received. 

 Alice and Bob now have a key that they can use to encode messages. But how can 
they be certain that Eve does not have a copy of it as well? Let’s assume that Eve has a 
copy of Bob’s receiving apparatus, and Alice’s sending apparatus. She inserts herself 
between Alice and Bob, receives and measures the qubits that Alice sends, and then 
transmits new qubits to Bob. The qubits that Eve sends are the same as those that she 
determines from her measurements. 

 Eve doesn’t know which basis Alice is using to encode any individual qubit (Alice 
and Bob talk about their bases only after all the measurements have been performed), 
so the best she can do is guess randomly. Consider a qubit which Alice sends as   0  . 
Assume that Eve measures in the   ′ ′0 1  -basis, with a result of   ′1  , so she sends a   ′1   qubit 
to Bob. Bob is measuring in the 01-basis, so there’s a 50% chance that this   ′1   qubit 
will be measured by Bob to be 1, which is not the value that Alice sent. 

  

Random #
0,1

Basis

01 or 0’1’
Basis

01 or 0’1’
Measure-

ment

Alice Bob

Eve     
  Fig 17.1     The BB84 quantum key distribution protocol. In an implementation using polarized 
photons, Alice uses   H   for   0   and   V   for   1  . She uses a half-wave plate to determine the 
basis: The wave-plate axis is set at 0° for the 01-basis, and at 22.5° (45° polarization rotation) 
for the 0 ′ 1 ′ -basis. At the receiving end Bob uses a half-wave plate with the same settings to 
determine his measurement basis, and his measurement apparatus consists of a polarizing 
beam splitter with a detector at each output. Eve sits between Alice and Bob, and tries to 
steal a copy of their key.   
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 Alice and Eve will be in different bases 50% of the time, so Eve will transmit a qubit 
to Bob in the wrong basis 50% of the time. Of those wrong-basis qubits, 50% of the 
time Bob will measure a value for a qubit that is not the value sent by Alice. Thus, with 
Eve listening in, 25% of Bob’s key will be wrong. To detect the presence of Eve, Alice 
and Bob select some random bits from their key and compare them openly over a pub-
lic, classical channel. If they fi nd that 25% of Bob’s bits are wrong, then they know that 
there is the possibility that Eve is listening in. If 100% of Bob’s bits are correct, then 
they know that there cannot be an eavesdropper. Of course, the bits that they compared 
openly are discarded from the key. 

 No real system is perfect, so Alice and Bob will never agree 100% of the time. For 
each system it is possible to determine a threshold level of agreement (something 
greater than 75%) for which it is possible to distill a key in which Alice and Bob have 
all the same bits, and that is essentially useless to Eve. This process of distilling a secret 
key from a key that might be partially compromised is known as privacy amplifi cation. 
During privacy amplifi cation bits in the key are sacrifi ced; the larger the initial error 
rate, the more bits are lost. Alice and Bob sacrifi ce enough bits to obtain whatever level 
of security they desire. 

 There is one eavesdropping attack that we appear to have ignored: Eve makes a 
perfect copy of Alice’s qubit. Eve measures the original qubit, and sends the copy on to 
Bob. If Bob gets a copy, or clone, of the original qubit, then he won’t have any meas-
urement errors, and he and Alice will have no way of detecting Eve’s presence. As we’ll 
see in the next section, however, quantum mechanics does not allow the perfect copy-
ing of an arbitrary quantum state, so this method of attack is not viable for Eve. 

 Finally, note that quantum cryptography has moved out of the laboratory and into 
commercial use. Several companies currently sell off-the-shelf quantum key distribu-
tion systems.     

   17.3    THE NO-CLONING THEOREM   

 We wish to create a cloning machine, which can copy an arbitrary state of system 1, 
  ψ 1 , onto the state of system 2. System 2 starts out in a “blank” state   B 2 , and if the 
cloning process is successful it ends up in state   ψ 2 , which is a perfect copy of   ψ 1 . 
We’ll represent the cloning machine by the unitary operator   Ŭc , and a successful clon-
ing operation is expressed as

   1 2 1 2
ˆ

cU B   . (17.7) 

 Suppose that system 1 consists of a qubit. If the qubit is in state   0 1  cloning opera-
tion is

   1 2 1 2
ˆ 0 0 0cU B   , (17.8)

while if the qubit is in state   1 1  the cloning operation is

   1 2 1 1
ˆ 1 1 1cU B   . (17.9)
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If the qubit is in the superposition state   ψ α β1 1 10 1= +  , eqs. (17.8) and (17.9) tell 
us that the cloning machine performs the operation

   1 1 2 1 2 1 2

1 2 1 2

ˆ ˆ ˆ0 1 0 1

0 0 1 1 .

c c cU B U B U B
  (17.10)

This is  not  the state we’d like our cloning machine to produce:

   1 1 2 1 1 2 2
ˆ 0 1 0 1 0 1cU B   . (17.11) 

 Thus, quantum mechanics does not allow for the existence of a device that can per-
fectly copy an arbitrary state of one system onto another. This is known as the no-
cloning theorem, and it was proved in 1982 by Wooters and Zurek [17.4], and 
independently by Dieks [17.5]. The no-cloning theorem is clearly good for cryptogra-
phy: It rules out the possibility that Eve could intercept Alice and Bob’s key without 
their knowledge. 

 Another thing the no-cloning theorem rules out is the possibility that we could com-
pletely determine the state of a single copy of a quantum system. As described in 
complement 5.A and lab 4, fully determining the state of a quantum system requires 
many measurements, of many different observables, performed on a quantum system 
repeatedly prepared in the same state. If we could perfectly clone an individual realiza-
tion of the ensemble, it would be possible to perform measurements on the clones, and 
hence determine the state of the individual quantum system. The no-cloning theorem 
will not allow this, so we cannot, even in principle, determine the full quantum state of 
an individual member of an ensemble.   

   17.3.1    No Super-Luminal Communication   

 The no-cloning theorem helps ensure that super-luminal communication is not possible. 
To see this, we fi rst need to imagine how such communication might be accomplished. 
Assume that Alice and Bob are on opposite sides of the solar system, and manage to 
share an ebit in the Bell-state   φ+

AB
 , given by eq. (17.3). If Alice performs a measure-

ment on her qubit, she collapses the state of the ebit, instantaneously affecting the state 
of Bob’s qubit. How might Alice and Bob use this state collapse to communicate? 

 Assume Alice performs a measurement on her qubit in the 01-basis.The measure-
ment result is either 0 or 1, it doesn’t matter—the important thing is that Bob’s qubit is 
left in either the state   0 B  or the state   1 B . Now, suppose that instead Alice performs a 
measurement on her qubit in the   ′ ′0 1  -basis. Recall that entanglement exists in any 
basis; in the   ′ ′0 1  -basis the ebit state   φ+

AB
  is

   φ+ = ′ ′ + ′ ′( )
AB A B A B

1
2

0 0 1 1   , (17.12)
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as you’ll show in problem 17.1. Alice’s measurement in the   ′ ′0 1  -basis will project 
Bob’s qubit into either the state   ′0 B  or the state   ′1 B . 

 Can Alice transmit information to Bob simply by deciding whether to perform a 
measurement in the 01-basis or the   ′ ′0 1  -basis? Regardless of the outcomes of these 
measurements, a measurement in the 01-basis leaves Bob’s qubit in one of the states 
  0 B  or   1 B , while a measurement in the   ′ ′0 1  -basis leaves Bob’s qubit in one of the states 

  ′0 B  or   ′1 B . If Bob could measure the state of his qubit, he could tell which measure-
ment Alice performed, and hence obtain information from her. However, as described 
above, the no-cloning theorem ensures that it is not possible for Bob to determine the 
state of an individual qubit. Alice and Bob cannot use this technique to communicate at 
super-luminal speeds.    

   17.3.2    Imperfect Cloning   

 The no-cloning theorem prohibits the perfect copying of arbitrary states, but it does 
leave open a few other possibilities. One is the ability to make imperfect copies of 
states, with limits on how accurate the copies can be. Another is the ability to perfectly 
clone some states, but not others. For example, a certain cloning machine might copy 
orthogonal basis states [eqs. (17.8) and (17.9)], but not superpositions of these states. 
Yet another possibility is the potential for a probabilistic cloning machine. When such a 
machine succeeds it creates a perfect clone, but when it fails it also destroys the original 
input and its associated information. For some discussion of these possibilities, see 
appendix F of ref.   [17.2]  .     

   17.4    QUANTUM TELEPORTATION   

 Suppose that Alice has a qubit in some unknown quantum state in her laboratory, and 
she wants to send that state to Bob, who’s on the other side of the solar system. It’s not 
possible for her to send her qubit directly, but she’d like to transmit the information 
about the state to Bob, so that he can have a copy. If Alice and Bob can do this, we say 
that they have successfully teleported the state of the system. Note that this teleporta-
tion is not like  Star Trek  teleportation. Here we’re somehow transmitting the informa-
tion about the state of the qubit and allowing it to be recreated somewhere else; the 
qubit itself doesn’t vanish in one place and reappear in another. 

 Let’s use some things that we already know, to infer some of the properties of quan-
tum teleportation. First, after teleportation Alice’s original qubit can no longer be in the 
same state; if it was then Alice and Bob would have managed to clone the state of 
Alice’s qubit, which is forbidden by the no-cloning theorem. Second, Alice can’t sim-
ply measure the state and send the information about it to Bob using a classical channel, 
because we showed in sec. 17.3 that it’s not possible to measure the state of an indi-
vidual quantum system. Since no amount of purely classical information can teleport 
the state, to be successful Alice and Bob must share some quantum information: Alice 
and Bob must share an ebit. 
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 At the start, Alice has a qubit in state   ψ α βa a a= +0 1  , and Alice and Bob have 
a shared ebit in state   φ+

AB
  [eq. (17.3)]. The total state of the system is thus

   

Ψ = ⊗

= +( ) ⊗ + +( ) ⊗⎡
⎣

⎤
⎦

+ψ φ

α β α β

a AB

a a A B a a A B
1
2

0 1 0 0 0 1 1 1 .
  (17.13)

You’ll show in problem 17.2 that   Ψ   can be written in the Bell-basis of  Alice’s two 
qubits  as   1   

   

Ψ = ⊗ +( )
+ ⊗ −( )
+ ⊗ +( )
+

+

−

+

−

1
2

0 1

1
2

0 1

1
2

0 1

1
2

φ α β

φ α β

ψ β α

ψ

aA B B

aA B B

aA B B

aAA B B⊗ − +( )β α0 1 .

  (17.14)

From this expression, it is fairly obvious that if Alice performs a Bell measurement 
that indicates her qubits are in the state   φ+

aA
 , Bob’s qubit is projected into the state 

  ψ α βB B B= +0 1  , which is exactly the desired state. Thus, by simply performing 
a Bell measurement, Alice successfully teleports the state to Bob, with probability 
  1 2 1 42/ /( ) =  , with no further action on Bob’s part. Because of her measurement result, 
Alice knows when this has occurred, and can inform Bob over a classical channel. 
Furthermore, Alice’s particles are projected into the state   φ+

aA
 , so she retains no in-

formation about her original state   ψ a
 , which ensures that the no-cloning theorem is 

satisfi ed. Thus, Alice and Bob have managed to teleport the state of a qubit, albeit with 
a success probability of 25%. 

 Suppose, however, that Alice’s Bell measurement projects her qubits into the state 
  φ−

aA
 , which also occurs with probability   1 2 1 42/ /( ) =  . From eq. (17.14) we see that 

Bob’s qubit is projected into the state   ψ α βB B B= −0 1  . Bob can transform this 
state into the desired state by simply applying a   π  phase shift to the   1 B  component of 
his qubit. The unitary transformation   Û   that accomplishes this task has the matrix 
representation

   
1 0 1 0ˆ

0 10 iU
e

  . (17.15)

   1.     Note that   
aA AB

 : the subscripts tell us which qubits are in the indicated state. 
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For polarization qubits, Bob can accomplish this transformation by simply using a 
half-wave plate whose axis is oriented horizontally (see  table  2.2  ). Thus, Alice can 
inform Bob that her Bell measurement resulted in   φ−

aA
 , and Bob knows to apply the 

transformation   Û   to his qubit to obtain the desired state. 
 Equation (17.14) indicates that there are two other possible outcomes of Alice’s Bell 

measurement. As you’ll show in the problems, in either case there is a unitary transfor-
mation that Bob can apply to transform his qubit into the same state as Alice’s original 
qubit. In all cases information about the state of Alice’s qubit is erased at Alice’s loca-
tion. Thus, the following protocol, illustrated in  fi g.  17.2  , will allow Alice to success-
fully teleport the state of her qubit to Bob: 
   
       1.     Alice and Bob share an ebit.  
      2.     Alice performs a Bell measurement on the joint state of the qubit and her portion of 

the ebit. There are four possible outcomes for this measurement, which requires two 
classical bits to encode, and she spends this information to Bob over a classical 
channel.  

      3.     Bob receives the information from Alice about the result of her measurement. This 
tells him exactly which of four unitary transformations he needs to apply to his por-
tion of the ebit, in order to transform its state into the state of Alice’s original qubit.      

   
   Quantum teleportation was fi rst proposed in 1993 by Charles Bennett and cowork-

ers [17.6], and was experimentally demonstrated a few years later.    

   17.5    QUANTUM COMPUTING   

 In this section we will concentrate on the processing of quantum information, with an 
emphasis on how quantum information processing is different from classical informa-
tion processing. In order to do that, we’ll need to briefl y discuss classical computation.   

  

+φ
AB

ψ
a

Bell

Measurement
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ψ
b

Bob

Classical

Channel

Û

    
  Fig 17.2     Quantum teleportation.   
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   17.5.1    Classical Gates   

 Modern computer microprocessors are phenomenally complicated objects: They con-
tain literally billions of transistors. When thinking about microprocessors, however, 
we don’t usually talk about individual transistors, but the logic operations that they 
perform. These logic operations are performed by gates that operate on bits, which are 
in the state 0 or 1. A logic operation can be specifi ed by its truth table, which tells what 
the gate output(s) will be, given its input(s). In the circuit model of computation, gates 
are represented as circuit elements, and wires indicate the fl ow of bits from one gate to 
another. For example,  fi g.  17.3   shows the circuit elements and truth tables for a NOT 
gate and a NAND (NOT-AND) gate.    

 For classical computation the NAND gate is said to be a universal gate, because it 
can be used to implement any other logic operation. For example,  fi g.  17.4   shows how 
to implement the XOR operation using NAND gates. This fi gure also illustrates another 
aspect of classical logic circuits: fanout. Fanout means that it’s possible to copy classi-
cal bits, simply by connecting wires together.       

   17.5.2    Quantum Gates   

 There are several important differences between classical computation and quantum 
computation. First, quantum computation is performed on qubits, which you recall can 
be in a superposition of both   0   and   1  . Second, quantum computation is performed 
with unitary operators, which always have the same number of inputs and outputs. 
Thus, for example, there is no quantum analog of the NAND gate, which takes two in-
puts, but has only one output. Third, there is no possibility for fanout of arbitrary qubit 
states, as it is forbidden by the no-cloning theorem. 

 We’ll discuss one- and two-qubit gates. The X-gate is a one-qubit gate. In the 
01-basis it is the quantum equivalent of a NOT gate, as it transforms   0   into   1  , and 
vice versa (see also problem 17.6). Its matrix representation is

  

A Q

Q

A

B

QA

0
0
1

1

QA B

0
0

0

0
0

1
1
1 1

1

1
1

(a)

(b)

    
  Fig 17.3     (a) A NOT gate and corresponding truth table. (b) A NAND gate and corresponding 
truth table.   
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0 1

X̂
1 0

  . (17.16)

This gate is called the X-gate because its matrix representation is the same as the Pauli 
matrix   x ; indeed, it is sometimes referred to as the Pauli-X gate. There is also a Y-gate 
and a Z-gate, which have the same matrix representations as   y  and   z . Two other 
important one-qubit gates are the Hadamard gate H, and the phase gate S.   2    The matrix 
and quantum-circuit representations of these one-qubit gates are shown in  table  17.1  .    

 Some of the most useful of the two-qubit gates are the controlled gates. The input 
qubits to a controlled gate are called the control ( C ) and the target ( T ); if the control 
qubit is   0   the target qubit is unchanged, while if the control is   1   the target undergoes 
some unitary transformation. For example, in a controlled-NOT (or controlled-X) gate, 
the NOT (Pauli-X) operation is performed on the target qubit, if the control qubit is in 
state   1  . Controlled-NOT is usually referred to as CNOT. In a two-qubit space four 
basis vectors are   00  ,   01  ,   10   and   11  , where the fi rst number refers to the control, and 
the second to the target. In this basis the CNOT operation has the matrix representation

  

A

B

= ⊕Q A B

    
  Fig 17.4     XOR using NAND gates.   

     Table 17.1     One-qubit quantum gates.         

   Name  Circuit Symbol  Matrix Representation     

 X (NOT) 
       

0 1
X̂

1 0     

 Y 
       

0
Ŷ

0
i

i     

 Z 
       

1 0
Ẑ

0 1     

 Hadamard 
    

1 11Ĥ
1 12       

 Phase 
       

1 0
Ŝ

0 i     

    2.     The corresponding operators   Ĥ  and   ̂S  are not italicized, to distinguish them from the Hamiltonian 
and spin operators.  
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1 0 0 0
0 1 0 0

CNOT
0 0 0 1
0 0 1 0

  . (17.17)

In general, a controlled-U (controlled-unitary) operation will behave as shown in  table 
 17.2  .    

 Because all quantum gates perform unitary operations, two-qubit gates have two 
inputs and two outputs. In quantum-circuit diagrams, qubits move left-to-right along 
horizontal lines. There are two different symbols for the CNOT operation, which are 
shown in  fi g.  17.5  ; also shown in this fi gure is the symbol for a general controlled-U 
operation.    

 Let’s look at an example of a quantum circuit. 

 EXAMPLE 17.1 
 What is the output state of the quantum circuit shown in  fi g.  17.6  ?    

 The input state is

   ψ1 1 20 1=   . (17.18)

The Hadamard gate operates on qubit 1, and after this gate the state is

  X
=

(a)

U

(b)

    
  Fig 17.5     (a) Two representations of a CNOT gate. (b) A controlled-U gate. The control bit 
moves along the top wire, and the target bit moves along the bottom.   

     Table 17.2     The truth table for a controlled-U operation.           

     inC      inT      outC      outT       

0        0      0      0     

   0      1      0      1     

   1      0      1      ˆ 0U     

   1      1      1      ˆ 1U     
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2 1 2

1 1 2

1 2 1 2

Ĥ 0 1

1 0 1 1
2

1 0 1 1 1 .
2

  (17.19)

After the CNOT gate we end up in one of the Bell states:

   

3 2

1 2 1 2

1,2

CNOT
1 0 1 1 0
2

,

  (17.20)

and our quantum circuit has managed to entangle the two inputs.  

 Any operation on  N -qubits can be performed by a combination of one- and two-
qubit gates. Furthermore, the CNOT gate is universal, in the sense that any two-qubit 
operation can be performed by a combination of CNOT’s and one-qubit operations. 
Thus, in principle, any quantum information processor can be built with one-qubit and 
CNOT gates.    

   17.5.3    Deutsch’s Algorithm   

 The advantage of a quantum computer is that it can perform certain tasks faster than 
any classical computer. To achieve this speed-up, a quantum computer uses two proper-
ties of qubits that set them apart from ordinary bits. The fi rst is the quantum parallelism 
discussed in sec. 17.1. The second property that qubits display is interference; ordinary 
bits cannot interfere. 

 The fi rst algorithm which demonstrated that a quantum computer could perform 
faster than a classical computer was due to David Deutsch [17.7]. The problem consid-
ered by Deutsch may seem somewhat contrived, but the fundamentals behind it serve 
as the basis for other, more obviously useful algorithms. Here we’ll consider Deutsch’s 
algorithm as an example of a very simple quantum computer. 

 Consider a function   f x( )  which takes as its input a single bit   0 1,{ } , and gives as an 
output a single bit   0 1,{ } . There are four possible functions that operate on single bit 

  

H10

21     
  Fig 17.6     The quantum circuit considered in example 17.1.   
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inputs and outputs, and their behavior is shown in  table  17.3  . The functions   f x1 ( )  and 
  f x2 ( )  are known as “constant” functions, because their outputs are constant, independ-
ent of the input. The functions   f x3 ( )  and   f x4 ( )  are known as “balanced” functions; 
they are balanced in the sense that the outputs 0 and 1 occur equally often. The Deutsch 
problem is as follows: Someone gives you one of these functions, and you need to 
determine whether the function is constant or balanced. The key here is that you don’t 
care which function you are given, but only whether it is constant [  f x1 ( )  or   f x2 ( ) ] or 
balanced [  f x3 ( )  or   f x4 ( ) ].    

 To solve this problem classically, how many times do you need to evaluate   f x( ) ? 
The answer is twice. For example, suppose you input 0 to the black box, and the output 
is 0.  Table  17.3   tells you that your function is either   f x1 ( )  or   f x3 ( ) . One of these func-
tions is constant, the other is balanced, so you must also evaluate   f x( )  with an input of 
1. If the output is again 0 you know that the function is constant. Indeed, you not only 
know that the function is constant, but that it is   f x1 ( ) . 

 Now let’s show that when using a quantum computer we only need to evaluate   f x( )  
once, which is half as often as is needed classically. The circuit diagram for this com-
puter is shown in  fi g.  17.7  . We’ll describe the operation of the computer by examining 
the state of the qubits at the locations indicated in this fi gure. The input state is

   ψ1 1 20 1=   (17.21)

Each of the input qubits goes through a Hadamard gate, which results in the state

   
ψ2 1 1 2 2

1 2 1 2 1 2 1 2

1
2

0 1 1
2

0 1

1
2

0 0 0 1 1 0 1 1

= +( )⎡

⎣
⎢

⎤

⎦
⎥ ⊗ −( )⎡

⎣
⎢

⎤

⎦
⎥

= − + −( ) ..

     (17.22) 

 The gate labeled   U f   in  fi g.  17.7   works as follows. The input labeled  x  is passed to 
one of the outputs. The gate also computes   f x( ) , and then performs the XOR operation 
on   f x( )  and the input  y . The result of this operation,   y f x⊕ ( ) , is the second output. 
For example, suppose the unknown function is   f x1 ( ) , and the inputs are   x = 0  and   y = 0 . 
From  table  17.3   we know that   f1 0 0( ) =  , so the outputs are   x = 0  and   y f x⊕ ( ) = ⊕ =0 0 0 . 
You can verify that if the unknown function is   f x1 ( ) , the state after   U f   is

     Table 17.3     The outputs of the four possible functions which take a single bit (x) 
as input, and yield a single bit of output.             

   x    1f x      2f x      3f x      4f x       

 0  0  1  0  1   

 1  0  1  1  0   
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ψ3 1 2 1 2 1 2 1 2

1 1 2 2

1
2

0 0 0 1 1 0 1 1

1
2

0 1 1
2

0 1

= − + −( )
= +( )⎡

⎣
⎢

⎤

⎦
⎥ ⊗ −( )⎡

⎣
⎢

⎤

⎦
⎥ ..

  (17.23)

This is the same as the input state, so if the unknown function is   f x1 ( ) , then this gate 
simply performs the identity operation:   1

ˆˆ 1fU  . 
 In problem 17.10 you’ll verify that the state after   U f   depends on the unknown func-

tion, and is given by

   ψ3

1 1 2 2 1 2

1 1

1
2

0 1 1
2

0 1

1
2

0 1
=

± +( )⎡

⎣
⎢

⎤

⎦
⎥ ⊗ −( )⎡

⎣
⎢

⎤

⎦
⎥ =

± −( )⎡

⎣
⎢

⎤

⎦
⎥

f f f,

⊗⊗ −( )⎡

⎣
⎢

⎤

⎦
⎥ =

⎧

⎨
⎪
⎪

⎩
⎪
⎪

1
2

0 12 2 3 4f f f, .

  (17.24)

Note that apart from insignifi cant overall phase factors, the two constant functions 
yield one output state, while the two balanced functions yield a different state. Further-
more, all four functions yield the same state for the second qubit, and it is the fi rst qubit 
which is in a different state depending upon the type of function. Finally, the fi rst qubit 
passes through a Hadamard gate, which transforms the state to

   ψ4

1 2 2 1 2

1 2 2 3 4

0 1
2

0 1

1 1
2

0 1
=

± ⊗ −( )⎡

⎣
⎢

⎤

⎦
⎥ =

± ⊗ −( )⎡

⎣
⎢

⎤

⎦
⎥ =

⎧

⎨

f f f

f f f

,

, .

⎪⎪
⎪

⎩
⎪
⎪

  (17.25)

Now we see that it is possible to easily tell what type of function   f x( )  is. We measure 
the fi rst qubit, and if the result is 0 the function is constant, while if it is 1 the function 
is balanced. Note that we have made this determination by evaluating   f x( )  only once. 

 Classically, it is not possible to answer the question of whether the function is constant 
or balanced without simultaneously determining which of the four functions is in the 
black box. In solving this problem classically we end up with more information than we 
need. The quantum computer is more economical in its solution to the Deutsch problem: 
It returns only the information we want, and does so with fewer function evaluations.    

  

H

H
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ψ1 ψ2 ψ3 ψ4

x

y ⊕y f x( )

x10

21

    
  Fig 17.7     A quantum circuit implementing Deutsch’s algorithm.   



 430   •  Q U A N T U M  M E C H A N I C S

   17.5.4    Other Quantum Algorithms   

 The Deutsch algorithm is important because it was the fi rst to demonstrate an improve-
ment in speed for a quantum computer, not because of its practical utility. This algo-
rithm cuts the number of function evaluations in half, from 2 to 1, which isn’t much of a 
speed improvement. However, in 1992 Deutsch and Richard Jozsa extended Deutsch’s 
algorithm to  n -bit functions, and showed that a quantum computer could solve the  n -bit 
Deutsch problem exponentially faster than a classical computer. 

 There are other important quantum algorithms. Lov Grover has shown that a quan-
tum computer can search a database faster than a classical computer. Peter Shor has 
shown that a quantum computer can factor large numbers faster than a classical com-
puter, which has important implications for cryptography. The security of the RSA 
encryption protocol mentioned in sec. 17.2 is based on the fact that factoring large 
numbers (of order 1000 bits) on a classical computer is impractical. With a suffi ciently 
large quantum computer this factorization would be feasible, making RSA encryption 
no longer secure. Of course, even a quantum computer would not be able to crack the 
quantum encryption scheme described in sec. 17.2.    

   17.5.5    Real Quantum Computers   

 In principle, there are as many different physical systems which can implement a 
quantum computer as there are systems which can implement qubits. These systems 
include photons, trapped atoms, quantum dots, superconducting circuits, and nuclear 
magnetic resonance. For example, it is possible to implement Deutsch’s algorithm us-
ing techniques and optical elements (wave plates, beam splitters, etc.) used in the labs 
described at the end of this text [17.8]. For a discussion of different physical implemen-
tations of quantum computers, see refs.   [17.1]  and  [17.9]  . 

 In addition to the model of a quantum computer using gates and circuits described 
above, there are other, very different models for quantum computation. In cluster-state 
quantum computation, the system is initialized in an entangled state of many qubits, 
called a cluster state, and the computation proceeds by performing a series of single-
qubit measurements. In adiabatic quantum computation, the solution to a problem is 
represented by the ground state of a complex Hamiltonian. The system is initialized in 
the ground state of a simple Hamiltonian, which is then adiabatically transformed into 
the desired Hamiltonian. These other models for quantum computation are equivalent 
in power to a quantum computer implemented with gates. 

 One thing any real quantum computer will need to deal with is decoherence. It is 
necessary for the quantum states of different qubits to interfere with each other in order 
to perform quantum computations. Similar to the optical coherence described in com-
plement 2.A, qubits must have stable phase relationships to interfere, and to remain 
entangled with each other (see sec. 8.A.4). Outside infl uences, such as losses or stray 
fi elds, can cause qubits to decohere. The larger the number of qubits that are involved, 
the more rapidly decoherence occurs. It is possible to implement quantum error correc-
tion to reduce the effects of decoherence, but decoherence invariably plays a role in 
limiting the performance of a quantum computer. 
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 To date quantum computers have performed tasks such as implementing Deutsch’s 
algorithm, and factoring the number 15 using Shor’s algorithm. These tasks involve 
relatively small numbers of qubits, but scaling up is diffi cult. Entanglement among a 
large number of qubits is necessary for quantum computation, and as I write this the 
largest number of qubits that have been entangled in an experiment is 14. Quantum 
computing has a great deal of promise, but it will require signifi cant work to realize that 
promise.       
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         17.7  PROBLEMS    

           17.1*     Prove that if the state   φ+
AB

  in eq. (17.3) is expressed in the   ′ ′0 1  -basis, the 

result is given by eq. (17.12).  
      17.2*     Verify that eq. (17.13) can be rewritten in the form given in eq. (17.14).  
      17.3     Determine the two transformations   Û   that Bob must perform on his qubits 

in order to successfully perform teleportation when the results of Alice’s Bell 
measurement are   ψ±

aA
 .  

      17.4     Show that quantum teleportation can be accomplished with an ebit in the state 
  ψ+

AB
 . (An ebit in any of the Bell states can be used for teleportation.)  

      17.5     Prove that the circuit in  fi g.  17.4   performs the XOR operation.  
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      17.6     Determine the operation of an X-gate on the states   ′0   and   ′1  . Does it behave 
like a NOT gate for these states?  

      17.7     Show that the Bell state   φ+
AB

  can be transformed into any of the other Bell 
states by using one of the Pauli gates (X, Y, or Z) to operate on one of the qubits. 
(Any of the Bell states can be transformed into any of the other Bell states in a 
similar manner.)  

      17.8*     (a) Work out the truth table (similar to that of  table  17.2  ) for a CNOT gate in 
01-basis. (b) Work out the truth table for a CNOT gate in   ′ ′0 1  -basis. (c) The 
quantum circuit symbol for a CNOT gate seems to indicate that the control bit 
is not changed by the operation of the gate. Is this always true? In the   ′ ′0 1  -basis, 
which qubit appears to be the control, and which qubit appears to be the target?  

      17.9     (a) Work out the matrix representation for a controlled-Z (CZ) gate in the 
01-basis. (b) Show that the circuit of  fi g.  17.8   implements the CZ operation.     

      17.10     Verify eq. (17.24).  
      17.11*     If the   U f  -gate of  fi g.  17.7   is programmed with   f x1 ( ) , the gate implements the 

unitary transformation   
1

ˆˆ 1fU  . (a) Work out the unitary transformations that 
correspond to the other three possible functions. Express your answers in terms 
of the one-qubit unitary operators in  table  17.1   and   CNOT . (b) Find quantum 
circuit diagrams for the four possible   U f   gates used in implementing Deutsch’s 
algorithm.                          

  
=

ZH H     
  Fig 17.8     A CZ gate implemented with Hadamard and CNOT gates.   



      Laboratories  

      Previously in this text we have discussed certain physical phenomena that are coun-
terintuitive. For example, it’s diffi cult to understand how a single photon will interfere 
with itself, or how local realism can be violated. Because these phenomena defy com-
mon sense, it is important to verify them experimentally. This is what you will do in the 
laboratories described here.    

  GETTING STARTED   

 Suggestions on the equipment used to perform these laboratories can be found in a 
number of places. The original journal articles that fi rst described many of these experi-
ments often contain equipment lists. References to these articles are presented at the 
end of each individual laboratory.   1    Equipment lists are also available on several web-
sites; my website  http://www.whitman.edu/~beckmk/QM/  contains such a list. 

 The LabVIEW programs used to acquire the experimental data are also available 
from my website. The descriptions of the laboratories presented here assume the use of 
these programs, but the labs can be easily adapted for use with other software.    

  BEFORE LAB   

 Each lab contains a “Lab Ticket” that you should complete before attending the lab.    

  1.     Please keep in mind, however, that technology and manufacturers change. Original equipment may 
now be out of date or unavailable. 

http://www.whitman.edu/~beckmk/QM/
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  IMPORTANT LABORATORY SAFETY TIPS        

       •     For your safety,  NEVER LOOK DIRECTLY INTO THE LASER.  You should 
 WEAR THE LASER SAFTY GOGGLES  while in the lab; they will block the 
intense blue laser light, but still allow you to see.  

      •      REMOVE YOUR WATCH OR ANY OTHER SHINY JEWLERY FROM 
YOUR HANDS OR WRISTS . A refl ection off of a shiny surface can be acciden-
tally directed to someone’s eye.  

      •     For the safety of the equipment,  NEVER TURN ON THE ROOM LIGHTS 
WHILE THE PHOTON COUNTING MODULES ARE ON .                  



         LAB 1 

Spontaneous Parametric 
Downconversion  

  LAB TICKET 

      You have a nonlinear crystal which has been cut to downconvert pump light at 405 nm 
into signal and idler beams at 810 nm. If the index of refraction of the crystal is 1.659 
at 405 nm, and 1.661 at 810 nm, what angle do the signal and idler beams make with 
respect to the pump?    

   L1.1    INTRODUCTION   

 All of the experiments described here use photon pairs produced via spontaneous 
parametric downconversion as a light source. This physical process comes in several 
variations, but at its most basic level it is a process in which light of one frequency is 
converted into light of a different frequency. Any optical process which changes the 
frequency of a light beam is inherently nonlinear. Most of the other optical processes 
you are probably familiar with (absorption, refl ection, refraction, polarization rotation, 
etc.) are linear processes; they may affect many properties of a light fi eld, but linear 
processes can never change the frequency. 

 In the process of spontaneous parametric downconversion, shown schematically in 
 fi g.  L1.1  , a single photon of one frequency is converted into two photons of lower fre-
quency (by approximately a factor of 2) in a nonlinear crystal. While downconversion 
is extremely ineffi cient (10s of milliwatts of input power generate output beams that 
must be detected using photon counting) it is much more effi cient than other sources of 
photon pairs (for example, atomic emission of 2 photons).    

 The input wave is referred to as the pump (at angular frequency   ωp ), while the two 
outputs are referred to as the signal and idler (at angular frequencies   ωs  and   ωi ). Spontane-
ous parametric downconversion is said to be “spontaneous” (as opposed to “stimulated”) 
because there are no input signal and idler fi elds—they’re generated spontaneously inside 
the crystal. The process is “parametric” because it depends on the electric fi elds, and not 
just their intensities. This means that there is a defi nite phase relationship between the 



 436   •  L A B O R AT O R I E S

input and output fi elds. It is called “downconversion” because the signal and idler fi elds 
are at a lower frequency than the pump fi eld. 

 Energy conservation requires that the energy of the pump photon is equal to the sum 
of the energies of signal and idler photons:

   
ω ω ω

ω ω ω
p s i

p s i

= +

= +

,

.
  (L1.1)

We see that energy conservation implies that the frequencies of the signal and idler 
waves add up to the frequency of the pump. Momentum conservation is equivalent to a 
classical condition known as phase-matching, which requires that the wave vectors of 
the input and output fi elds satisfy:

   
k k k

k k k
p s i

p s i

= +

= +

,

.   (L1.2)

Recall from chap. 2 that the frequencies and wave vectors are not independent of each 
other; they are related by a dispersion relationship. For the pump wave we have 

    k
n

cp
p p=

ω
  , (L1.3)

where   np  is the index of refraction of the downconversion crystal at the pump 
frequency. There are similar expressions for the signal and idler waves. 

 It is important to note that the indices of refraction depend on the frequency:   n ω( ) . 
If the pump, signal, and idler waves are nearly collinear, eqs. (L1.1) and (L1.2) imply 
that the indices of refraction of all three waves are nearly the same. For most transparent 
optical materials, the index of refraction increases with frequency in the visible part of 
the spectrum. Since the pump is at nominally twice the frequency of the downconverted 
waves, it will ordinarily have a very different index of refraction from the signal and 
idler. Thus, we need to use a “trick” to satisfy the phase-matching condition. The trick 
is to use a birefringent downconversion crystal. 

  

ω
p

ω
i

ω
s

    

  Fig L1.1     Type-I spontaneous parametric down conversion. Inside a crystal one pump photon 
at angular frequency   p  is converted into signal and idler photons at angular frequencies   s   
and   i . The polarizations of the signal and idler photons are orthogonal to that of the pump.   
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 In type-I downconversion the polarizations of the signal and idler are determined by 
the crystal orientation, and are parallel to each other. For maximum effi ciency the pump 
polarization is perpendicular to that of the signal and idler. Since the pump is polarized 
orthogonal to the signal and idler, in a birefringent crystal its dispersion relationship is 
different than that of the downconverted beams. For certain crystals it is possible to 
satisfy the constraints imposed in eqs. (L1.1) and (L1.2) by proper orientation of the 
pump beam wave vector   k p  and polarization with respect to the crystal axes. 

 The crystal we typically use is   β -Barium Borate (BBO). In these experiments the 
pump laser has a wavelength of around 405 nm, while the signal and idler beams are at 
810 nm (twice the wavelength, half the frequency). In order to separate the signal and 
idler, they are chosen to make a small angle (about 3 o ) with the pump beam; the signal 
comes out a few degrees from the pump, and the idler comes out a few degrees on the 
other side of the pump ( fi g.  L1.1  ). Since only the relative angles between the pump, 
signal, and idler are important, the signal and idler beams are emitted into cones sur-
rounding the pump beam (see, e.g., ref. [L1.1]). 

 However, for a given crystal orientation, there is not a unique solution to the con-
straints imposed in eqs. (L1.1) and (L1.2). The sums of the frequencies and wave vectors 
are constrained, but not the individual frequencies and wave vectors. If the idler frequency 
is somewhat more than half the pump frequency, it is possible for energy to be conserved 
[eq. (L1.1)] if the signal frequency is an equal amount less. In order for momentum to be 
conserved [eq. (L1.2)] the idler then makes a slightly greater angle with respect to the 
pump, and the signal makes a slightly less angle. Thus, the light coming out of a down 
conversion crystal is emitted into a range of angles (up to a few degrees), and wavelengths 
(on the order of 10s of nm, centered about twice the pump wavelength.) 

 While the emitted photons are allowed to come out in many directions, and with many 
frequencies, they always come in signal-idler pairs, with the pairs satisfying the con-
straints in eqs. (L1.1) and (L1.2). It is also the case that these photon pairs are emitted at 
the same time (to a very high precision), and to distinguish specifi c pairs of photons we 
use this fact. We fi nd the pairs by using a technique called coincidence counting. If two 
photons are detected within a narrow time interval (about 8 ns wide in these experiments) 
we say that they are coincident, and assume that they constitute a signal-idler pair. 

 In Lab 1 we’ll be exploring things like the momentum conservation rule and the 
precision of the timing of the photon pairs. The experimental apparatus is shown in  fi g. 
 L1.2  . The signal and idler photons are collected with lenses, coupled into optical fi bers 
and directed to single-photon counting modules (SPCMs) where they are detected. Not 
shown in this fi gure are colored glass fi lters, which are in-line with the fi bers, between 
the collection lenses and the SPCMs. These are RG780 fi lters that block wavelengths 
shorter than 780 nm, and transmit wavelengths longer than this. Their purpose is to 
transmit the downconverted light, while blocking scattered blue pump light and the 
green safe light used to illuminate the laboratory.    

 The SPCMs output an electrical pulse every time they detect a photon. These pulses 
then go the coincidence-counting unit (CCU). The CCU takes inputs from up to four 
detectors, and uses a programmable logic chip (a fi eld programmable gate array, or 
FPGA) to implement the coincidence logic and eight counters. In the labs described 
here, four of the counters count the pulses coming directly from the individual SPCMs 
(called singles counts), while the other four register 2-, 3-, or 4-fold coincidence counts. 
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Your instructor will show you how to confi gure the CCU to obtain the proper coinci-
dence signals. Data from the counters is streamed from the CCU to the host computer. 

 An important aspect of the experiment is properly coupling the signal and idler 
beams into the fi bers, and maximizing the number of coincidence counts obtained 
between the signal and idler beams. This alignment will be your primary task in this lab. 

 We speak of aligning detector- A  (for example), but really we mean aligning the lens 
and optical fi ber that deliver the downconverted light to the detector. Figure L1.3 shows 
the mounts, lenses, and fi bers of the signal and idler light collection optics. The bases 
which hold the mounts slide along a ruler, which is fastened to the table. This allows 
reasonably precise translation of the mounts, in order to position them at the correct 
angles to detect the downconverted photons.       

   L1.2    ALIGNING THE CRYSTAL   

  Note to instructors: I would suggest that the crystal alignment described in this section be 
performed prior to students coming into the laboratory. You can then remove the detectors 
so that the students can align them, beginning with the procedure presented in sec. L1.3 . 

 The pump laser should be mounted so that its polarization is vertical (or horizontal). 
The beam must be aligned so that it is approximately collimated and traveling level to 
the table at a convenient height (4 inches or so). It is also useful if the beam is traveling 
directly above a row of holes in the optical table or breadboard. If your laser is not pre-
collimated, you’ll need to insert a collimation lens. The beam can be leveled and 
directed along a row of holes using the two mirrors shown in  fi g.  L1.2  . Once the beam 
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  Fig L1.2     The experimental apparatus. Here  λ /2 denotes a half-wave plate, DC denotes the 
downconversion crystal, FFC denotes fi ber-to-fi ber coupler, and SPCMs denotes the single 
photon counting modules. The signal and idler beams impinge on the collection optics A and 
B, are focused into fi bers, and delivered to the SPCMs.   
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has been leveled, it serves as a convenient reference that will allow you to place other 
optics, such as the fi ber coupling-lenses, at this same height. 

 The crystal alignment proceeds as follows: 
   
       •      Double check that the detectors are turned off.   
      •     Insert the 405 nm half-wave plate and the downconversion crystal into the pump 

beam. Orient them so that they are perpendicular to the beam. This is most easily 
done by looking at the back refl ection from the optic, and making sure that this 
refl ection travels nearly along the direction of the incoming beam. Rotate the half-
wave plate so that it is at 0°.  

      •     Use the alignment laser to coarsely align detector- A , as described below in sec. L1.3. 
When this is done, make sure that the alignment laser is turned off, and then discon-
nect the  A -fi ber from the alignment laser, and connect it to the fi ber leading to the 
 A -detector SPCM.  

      •     Run the LabVIEW program “Coincidence.vi” (some of the basics of this program are 
discussed in sec. L1.3, and more details are given in the documentation that came 
with the program).  

      •      Make sure the room lights are turned off  (it’s OK for the green safe lights to be on) 
and turn on the detectors.  

      •     Adjust the horizontal and vertical tilts on the mount holding the detector- A  collection 
optics to maximize the count rate.   

   

      

  Fig L1.3     The fi ber-coupling mounts.   
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   At this point you will hopefully see a large number of counts on detector- A , but you 
need to make sure that these counts are actually downconversion and not just background. 
   
       •     Rotate the half-wave plate in the pump beam while observing the counts on detector-

 A . As the wave plate is rotated the counts should increase and decrease; this depen-
dence on the pump polarization is confi rmation that you are seeing downconversion. 
Rotate this wave plate to maximize the number of counts on detector- A .   

   
   If you do not see a dependence on the polarization of the pump, you are not seeing 

downconversion. There are two possibilities: (1) Detector- A  is not properly aligned, so 
you need to go back and realign it. (2) Your crystal is possibly too far away from the 
correct tilt angle, so skip the next bulleted step, and then continue following this proce-
dure. You may need to iterate back-and-forth between adjusting the pump polarization 
and the crystal tilt in order to see downconversion. 
   
       •     Perform the fi ne alignment of detector- A  described below in sec. L1.3, sliding the 

collection optics along the ruler to optimize the angle that the signal beam makes 
with the pump beam.   

   
   At this point the crystal should still be perpendicular to the pump beam; now you want 

to optimize its tilt angle. Your crystal can be tilted by using the adjustment screws on its 
mount. The downconversion effi ciency will be extremely sensitive to tilt in one direction 
(horizontal or vertical), but very insensitive to tilt in the other. Which direction is sensitive 
depends on the orientation of your crystal, and the pump polarization: For a vertically 
polarized pump, the crystal should be sensitive to tilt in the vertical direction. 
   
       •     Using the adjustment screws on the crystal mount, slowly tilt the crystal horizontally, 

while monitoring the counts on detector- A . If the count rate is sensitive to this tilt, 
adjust the tilt to maximize the count rate. If the count rate is insensitive to this tilt, 
adjust the crystal so that it is perpendicular to the pump.  

      •     Repeat the last step while adjusting the vertical tilt.   
   

   Your downconversion crystal should now be reasonably well aligned. When you have 
completed the full alignment of both detectors, described below, you might want to once 
again carefully adjust the tilt of the crystal in order to maximize the coincidence count rate.    

   L1.3    ALIGNING DETECTOR A   

 The downconversion crystal is cut so that when properly aligned, the signal and idler 
beams make nominal 3° angles with respect to the pump beam. The fi rst order of busi-
ness is to place detector- A  so that it makes a 3° angle with the pump beam, and get it 
facing the downconversion crystal. 
   
       •      Double check that the detectors are turned off.   
      •      Insert a beam block in the blue pump beam.   
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      •     The fi ber from the  A  collection optics leads to a fi ber-fi ber coupler, where it joins 
another fi ber which leads to the fi lters and a SPCM. Unscrew the fi ber coming from 
the  A  collection optics, and connect it instead to the fi ber leading from the alignment 
laser, as shown in  fi g.  L1.4  .  Please do this carefully,  so that you don’t scratch the 
fi ber tip.     

      •     Place the detector- A  mount so that it makes an angle of approximately 3 °  from the 
pump laser, and that its base is pushed up against the ruler (as shown in  fi g.  L1.3  ).  

      •     Turn on the alignment laser ( your instructor will tell you the maximum current 
for your laser ), then adjust the vertical and horizontal tilt of the mount, using the 
knobs on the back, so that the beam strikes the center of the downconversion crystal. 
The laser light appears dim because it is at a wavelength that your eye is not very 
sensitive to.   1    If you stick white paper in the beam, you should be able to see it when 
the room lights are out. You should also be able to see it very easily using a CCD 
camera and a monitor.  

      •     Gently screw the  A -detector mount to the table, and double check that the laser is still 
shining on the center of the crystal.  

      •      Turn off the alignment laser.   

  

AB

DC

λ/2
Pump

Laser

SPCMs

Alignment

Laser

FFC

    

  Fig L1.4     Using the alignment laser. The beam should travel backward from the collection 
optics, and onto the downconversion crystal.   

   1    The alignment laser puts out several milliwatts of light at about 800 nm. Your eye is not very sensitive 
to this light, but it IS a fairly intense beam, and you should  be careful not to look directly into it.  Also,  take 
care not to accidentally couple the laser light into the fi ber leading to the SPCMs.  The fi lters will not 
block much light at this wavelength, and the SPCMs are VERY sensitive to it and could easily be damaged. 
It is wise to  make sure that the SPCMs are turned off while the alignment laser is turned on .  
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      •     Unscrew the  A -fi ber from the alignment laser, and connect it to the fi ber leading to 
the  A -detector SPCM. Take care when you do this.   

   
   The  A -detector is now coarsely aligned. The next step is to perform a fi ne alignment, 

to maximize the signal on this detector. 
   
       •     Start by opening the LabVIEW program “Coincidence.vi”.  
      •     Run the program by clicking the Run icon (the arrow in the upper left corner of the 

window).  
      •     If you ever need to stop the program, do so by pushing the  STOP  button in the upper 

left. Do not simply close the window without stopping—if you do this the program 
does not exit gracefully. At the very least you’ll need to restart LabVIEW.   

   
   After a few seconds the program is running, reading the counters, and updating the 

screen in real time—although this may not be obvious at fi rst because the detectors 
should still be turned off. 
   
       •     Remove the beam block from the blue pump beam.  
      •      Make sure the room lights are turned off  (it’s OK for the green safe lights to be on) 

and turn on the detectors.   
   

   Now the indicators on the screen should be changing, and it should be more obvious 
that the program is running. The mode the program is currently running in is useful for 
“tweaking”: Adjusting the various parameters and seeing how they affect the measured 
count rates. Once things are adjusted as you want them to be, you press the  Take Data  
button and the program switches to data record mode, in which the data is saved to a 
fi le on the disk. 
   
       •     Make sure the  Experimental Setup  dial is set to  Coincidence  (if it isn’t, click on the 

dial and rotate it), and that  Update Period  is set to 0.1 or 0.2s (if it isn’t, highlight 
the value, type “0.2”, and hit <Enter>).   

   
   You should see some  A  counts, but possibly not a large number. For the moment 

don’t worry about the  B  counts or the  AB  coincidence counts. 
   
       •     Set the full scale reading on the “thermometer” measuring the  A  counts to be about 

3 times larger than the present count rate (highlight the value at the top, and replace 
it with a new value). The idea is that you’re going to be trying to increase the  A  count 
rate, so you want to have some room on the display to see the count rate increase.  

      •     Slowly adjust the horizontal tilt of the detector- A  mount while observing the 
count rate. If tilting in one direction decreases the counts, tilt the other way. Keep 
tilting back and forth until you have maximized the count rate. If you need to 
change the full-scale reading on the “thermometer” while performing this adjust-
ment, then do so.  

      •     Repeat the last step, but using the vertical tilt adjustment.   
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   Now the detector is looking directly back at the downconversion crystal, but we 
need to optimize the angle that the detector makes with the pump beam. 
   
       •     In your lab notebook, record the position of detector- A  (using the ruler as a guide) 

and the count rate.  
      •     While holding the mount in place with one hand, and keeping it pushed against the 

ruler, unfasten the screw that secures the mount to the table. Using one hand to hold 
the mount in place on the table, use your other hand to readjust the horizontal tilt so 
that the  A  count rate is maximized. Note that the vertical adjustment should not need 
to be changed, but you can adjust it if you do need to.  

      •     Slide the detector mount 0.5 or 1 mm in either direction, and readjust the tilt to 
maximize the  A  detection rate. Note the position and the rate.  

      •     Continue to move and tilt the detector (with ever-fi ner adjustments) until you fi nd an 
alignment which maximizes the  A  count rate. Note that each time you slide the detector 
you should maximize the count rate by adjusting the tilt before you start to slide it again.  

      •     Once the count rate is maximized, carefully screw the mount securely to the table, 
then give one fi nal adjustment of both the vertical and horizontal tilts.  

      •     Record in your notebook the position of the  A -detector and the detection rate.  
      •      Turn off the detectors.  

         Q1: What is the angle of the  A -detector from the pump beam at this optimal position?   

             L1.4    ALIGNING DETECTOR B   

 The idea now is to place detector- B  in the proper location to maximize the number of 
 AB  coincidence counts. Remember that although the downconverted light is emitted in 
many directions, individual pairs of photons have well-defi ned angles, as determined 
by eq. (L1.2). Since detector- A  is now fi xed, it is necessary to place detector- B  in the 
correct spot to properly detect the photon pairs. Thus, we are interested in maximizing 
the  AB  coincidence counts, not the singles counts on the  B  detector. 
   
       •      Make sure the detectors are turned off.   
      •     Insert a beam block in the blue pump beam.  
      •     Connect the fi ber from the collection optics for detector- B  to the alignment laser at 

the fi ber-fi ber coupler (similar to  fi g.  L1.4  , but with  B  connected instead of  A ).  
      •     Place the detector- B  mount so that the base pushes the up against the ruler, as shown 

in  fi g.  L1.3  . Begin by locating detector- B  so that it makes roughly the same angle 
from the pump beam as detector- A .  

      •     Turn on the alignment laser, and adjust the tilt of the mount so that the beam shines 
onto the downconversion crystal in order to coarsely align detector- B . Gently tighten 
the mount to the table.  

      •      Turn off the alignment laser.   
      •     Carefully unscrew the  B -fi ber from the alignment laser, and connect it to the fi ber 

leading to SPCM  B .  
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      •     Remove the beam block from the blue pump beam.  
      •      Make sure the room lights are turned off,  and then turn on the detectors.  
      •     Slowly adjust the horizontal tilt of detector- B  while observing the  AB  coincidence 

count rate (NOT the  B  singles rate). Keep adjusting until you have maximized the 
coincidence count rate. Once again, you may need to change the full-scale reading on 
the  AB  “thermometer” while performing this adjustment. If you do not see any coin-
cidences, or just very few coincidences, you can start by simply maximizing the 
singles count rate on detector- B .  

      •     Repeat the last step, but using the vertical tilt adjustment.  
      •     In your lab notebook, record the position of detector- B , and the  B  and  AB  detection 

rates.   
   
   Now perform the fi ne alignment of detector- B . 
   
       •     While holding the  B  mount in place with one hand, and keeping it pushed against the 

ruler, unfasten the screw that secures the mount to the table. Using one hand to hold 
the mount in place on the table, use your other hand to readjust the horizontal tilt so 
that the  AB  coincidence count rate is maximized.  

      •     Now repeat the procedure you did before, but with detector- B . Slide the mount 
0.5 or 1 mm in either direction, and readjust the tilt to maximize the  AB  coinci-
dence rate.  

      •     Continue to move and tilt the detector until you fi nd an alignment which maximizes 
the coincidence count rate. Ask your instructor what count rate you should be shoot-
ing for.  

      •     Once the count rate is maximized, carefully screw the mount securely to the table, 
then give one fi nal adjustment of both the vertical and horizontal tilts.  

      •     Record the position of detector- B , and the optimal  B  and  AB  count rates. 

             Q2: What is the angle of the  B -detector from the pump beam at this optimal position?   

     

        L1.5    ANGULAR CORRELATIONS – MOMENTUM 
CONSERVATION   

 Having done the above, you should have the optimal alignment, and some idea of the 
range over which you can obtain coincidences. Now make a careful study of how the 
coincidence rate depends on angle. You will fi x the position of one detector, and scan 
the other over a 1° range of angles, centered about the optimal angle. You should take 
at least 10 data points across this range, calculating the average and standard deviation 
of the coincidence rate at each point. You will use the  Take Data  feature of the program 
to do this. 
   
       •     Place detector- B  so that it is at the smallest angular position you will acquire data at, 

and adjust the tilt to optimize the coincidence rate.  



LAB  1 : SPONTANEOUS  PARAMETR IC  DOWNCONVERS ION  •   445 

      •     In the  Data Taking Parameters  section of the program set  Update Period (Data 
Run)  to 1.0 s, and  Number of Points  to 10. Now press the  Take Data  button.   

   
   A new window will automatically open as the computer switches to data taking 

mode. The computer will automatically take 10 measurements with 1.0 s counting win-
dows, plot the data on the screen, calculate the mean and standard deviation of the 
coincidence rate, and save all the data to a fi le. The data fi le is automatically named 
according to the date and time. 
   
       •     In your notebook record the fi lename, important parameters (e.g., the location of the 

detector), and the results.  
      •     Once you have written down all of these parameters, you can close the window of the 

data recording program.  
      •     Check the data fi le you just created by opening it up and looking at it (it’s easiest to 

use a spreadsheet to examine the data, so open the fi le from within the spreadsheet 
program). The info in the fi le should agree with what you wrote in your notebook.  

      •     Repeat the above process for at least 10 data points over a 1° range of angles. At the 
two extremes of your data, the coincidence rates should be less than 10% of the 
maximum rate; if this is not the case, you should take more data at larger and/or 
smaller angles. Also, if the peak in your data is not well resolved take more data with 
fi ner angular adjustments.  

      •     When you’re all done taking data, place your detector at the optimum position, and 
screw it to the table. 

    After you leave the lab, create a graph of coincidence count rate versus angle, 
including error bars. 

             Q3: Approximately what is the full width at half maximum (FWHM) of the angular 
spread of this distribution?   

             L1.6    POLARIZATION   

 Now you’re going to examine the polarization properties of your downconversion 
source. 
   
       •     Place a linear polarizer in the blue pump beam (after the crystal) and rotate it to 

maximize the amount of blue light transmitted through the polarizer—just look at the 
blue light on a screen and maximize its brightness. You have now oriented the polar-
izer so that it is parallel to the polarization of the blue pump beam.  

      •     Move the polarizer so that it is in front of the  A -collection optics. 

        
     Q4:  What happens to the count rate on the  A -detector when you insert this polar-

izer? What does this say about the relative orientation of the polarization of the 
blue beam and the polarization of the beam hitting the  A -detector?   
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       •     Repeat this measurement by placing the polarizer in front of the  B -collection optics. 

             Q5: What happens to the count rate on the  B -detector when you insert the polarizer? 
What does this say about the relative orientation of the polarization of the blue 
beam and the polarization of the beam hitting the  B -detector?   

       •     Remove the polarizer. While looking at the count rates, rotate the pump-beam half-
wave plate. 

             Q6: How many degrees do you need to rotate the wave plate in order to minimize 
the count rates? By how far has the polarization of the blue beam been rotated? 
Does the polarization of the downconversion change as the pump-beam polari-
zation changes? (Check this by using your polarizer.)   

       •     Remove the polarizer and rotate the wave plate back to maximize the count rates.   
   

        L1.7    TIMING   

 As discussed above, the photon pairs are produced not only with well-defi ned angles, 
but also at well-defi ned times. Indeed, the two photons are produced at the same time. 
We can’t say that they are produced at  exactly  the same time, because there is an inde-
terminacy relationship between energy (frequency) and time:
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The uncertainty in the time is given approximately by the inverse of the bandwidth of 
the downconverted light:
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4π

  , (L1.5)

[see also eq. (2.A.13)]. For our experimental parameters the uncertainty in time is on 
the order of 10 fs—a time that is much shorter than our experimental apparatus can 
resolve. Here we will be able to show that this uncertainty is less than about a nano-
second. 

 In order to perform this measurement you’ll use an instrument known as a time-to-
amplitude converter (TAC), which measures the time interval between two events. In 
our case the two events are the detections of two photons. One detector is connected to 
the START input of the TAC, while the other is connected to the STOP input. The TAC 
outputs a voltage pulse whose height is proportional to the time interval between these 
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events. We ensure that the STOP always comes after the START by inserting an extra 
length of electrical cable between the STOP detector and the TAC. We will thus measure 
a time interval that is offset from zero by this electrical delay; we are not interested in 
this offset, but rather in the width of the distribution of the arrival times. 

 The output pulses from the TAC are most easily analyzed with an instrument known 
as a multichannel analyzer (MCA). An MCA reads in the voltage pulses and displays a 
histogram of the pulse heights. Because we can calibrate the TAC, this is essentially a 
measurement of the distribution of time intervals. 
   
       •     Your instructor will show you how to connect the detectors to the TAC.  
      •      Close the Coincidence.vi —it cannot be in memory at the same time as the MCA.vi.  
      •     Run the “MCA.vi” LabVIEW program.  
      •     This program updates the screen after a certain number of pulses are measured, not 

after a certain time interval. So, if nothing happens after a few seconds it probably 
means that there are no voltage pulses present. Make sure that the lights are off, and 
the detectors are on.  

      •     You should see a sharp peak appear in the distribution on your screen. Place the cur-
sors on either side of this peak, then click  Zoom to Cursors  to zoom in on it.  

      •     Hit the  Clear Buffer  button, and then accumulate enough data so that you can clearly 
see the peak. Push the  Save Data  button to save the data to a fi le. 

   After you leave the lab, create a graph displaying this data. Don’t necessarily show 
all the data, but show about a 10 ns window around the coincidence peak. 

            Q7: Approximately what is the full width at half maximum (FWHM) of this distri-
bution?  

          Q8: How wide a time window would you need to count essentially all of the coinci-
dences, but as little as possible of the background?  

            Q9: The coincidence circuit in your CCU has a coincidence window of about 8 
ns (assume that it’s centered about the peak). Given this information, estimate 
what fraction of the coincidences that are measured are true coincidences, and 
what fraction are “accidental” coincidences, due to the background. Explain 
how you came up with this estimate.   

     

              L1.8  References  

    [L1.1]  D. Dehlinger and M. W. Mitchell, “Entangled photons, nonlocality, and Bell inequalities 
in the undergraduate laboratory,” Am. J. Phys.  70 , 903 (2002).       
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       LAB 2 

“Proof” of the Existence 
of Photons  

  LAB TICKET 

      Explain the differences between the two-detector and three-detector measurements of 
  g ( )2 0( ) . For which do we hope to measure   g ( )2 0 1( ) <  , and why? What would such 
a measurement signify? What do we expect to obtain for the other measurement, 
and why?    

   L2.1    INTRODUCTION   

 First, we should defi ne what we mean by “proving” that photons exist. Classically, 
light is an electromagnetic wave. Quantum mechanically, light has both wave-like and 
particle-like properties, and the particle-like quanta are called photons. So, to prove 
that light is made of photons you want to do an experiment which makes this granular, 
particle-like nature of the fi eld apparent. 

 However, this is not enough. We never measure light directly, but always measure 
the current from a detector instead. It is possible for the granularity of our measure-
ments to be caused by the discrete nature of the electrons in our detector. Assume a 
classical wave is incident on a detector. How do we determine whether the granularity 
of our measurements is due to the discreteness of electrons in the detector, or the dis-
creteness of photons in the fi eld? There is no easy way to do this. Observing granularity 
in measurements of a fi eld is a necessary, but not a suffi cient, condition for the exist-
ence of photons. Granularity motivates the existence of photons, but does not prove it. 

 Since photons are inherently quantum mechanical objects (classical waves aren’t 
made of photons), an experiment which requires a quantum mechanical explanation 
would imply that the fi eld contains photons. In other words, if we do an experiment 
that we cannot explain classically, it means there is more to the fi eld than just classi-
cal waves. To be precise, the experiment we will do distinguishes between quantum 
mechanical and classical theories of the electromagnetic fi eld. If classical waves 
cannot explain the results, then we take this to mean that photons exist. 
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 You will be performing an updated version of the experiment performed originally 
by Grangier, Roger, and Aspect [L2.1, L2.2]. The experimental apparatus is shown in 
fi gs. L2.1 and L2.2. The basic idea is to show that if a single photon is incident on a 
beam splitter, it can be transmitted and detected at  B , or refl ected and detected at  B ′  , but 
not both. We ensure that a single photon is present in the signal beam incident on the 
beam splitter by using the spontaneous parametric downconversion source we studied 
in lab 1. By conditioning the measurements on the detection of an idler photon at  A , the 
signal beam is projected into a single-photon state.       

 The measurements are quantifi ed using a parameter called the degree of second-
order coherence,   g ( )2 0( ) . Below we’ll show that a classical wave theory of light 
requires   (2) 0 1g  . This is an instance of a classical inequality, of which there are 
several in physics.   1    There are situations in which quantum mechanics can violate 
classical inequalities, and in these cases we say that we are observing strictly quan-
tum mechanical phenomena. For this experiment, if we measure a value of (2) 0 1g
  , then the fi eld cannot be explained classically. As stated above, we will take this as 
proof of the existence of photons. The quantum state which yields maximum viola-
tion of this classical inequality is the single-photon state, for which the quantum 
prediction is   g ( )2 0 0( ) =  . 
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  Fig L2.1     The experimental apparatus. Here  λ /2 denotes a half-wave plate, DC denotes the 
downconversion crystal, PBS denotes a polarizing beam splitter, FFC denotes fi ber-to-fi ber 
coupler, and SPCMs denotes the single photon counting modules.   

   1.     Other classical inequalities are described in chap. 8 and lab 5. 
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 The above described experiment uses three detectors to measure   g ( )2 0( ) . We can 
think of this as measuring g ( )2 0( )   for the signal beam striking the beam splitter, 
 conditioned  on a detection in the idler beam. The conditioning is key—it’s what 
prepares the signal beam in a single-photon state. Without this conditioning the 
beam striking the beam splitter is classical. To prove this you will also perform a 
two-detector, unconditional measurement on the signal beam, for which you should 
observe (2) 0 1g   . 

 Measurements of g ( )2 0( )   were very important historically in the development of 
quantum optics. For some discussion of this history see ref. [L2.2], and the references 
therein.    

   L2.2    THEORY   

 Here we’ll discuss the classical and quantum predictions for   g ( )2 0( ) .   

      

  Fig L2.2     An overhead view of the wave plate, iris, PBS, and the collection optics. The beam 
paths are shown for clarity.   
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   L2.2.1    Classical Fields   

 By a classical fi eld we mean an electromagnetic wave that is completely described 
by Maxwell’s equations. Referring to fi g. L2.1, the intensity of the fi eld incident on the 
polarizing beam splitter (PBS) is   I tI ( ) . The transmitted and refl ected fi elds from the 
PBS go to detectors  B  and  B ′  , and their intensities are   I tB ( )  and   I tB′ ( ) . The correlations 
between   I tB ( )  and   I tB′ ( )  are given by the degree of second-order (temporal) coherence, 
  gB B,

( )
′ ( )2 τ  , which is a function of the time delay  τ  between the intensity measurements:

   g
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B B

B B
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τ
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If the light source is stationary (i.e., if its statistics do not change in time), then we can 
interpret the brackets as referring to ensemble averages rather than time averages. This 
quantity is called the degree of second-order coherence because it involves correlations 
between intensities, whereas the degree of fi rst-order coherence describes correlations 
between fi elds. 

 Of particular importance to us here is the case of simultaneous (  τ = 0 ) intensity 
correlations. If the beam splitter has an intensity transmission coeffi cient of   T  , and 
refl ection coeffi cient of   R   , then the transmitted, refl ected and incident intensities are 
related by

   I t I tB I( ) = ( )T   and  I t I tB I′ ( ) = ( )R   . (L2.2)

Inserting these expressions into eq. (L2.1), we fi nd that
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20 0   , (L2.3)

which we note is independent of the splitting ratio of the beam splitter. From the Cauchy-

Schwartz inequality, it is straightforward to prove that   I t I tI I( )⎡⎣ ⎤⎦ ≥ ( )2 2
 .   2    Using 

this, we fi nd that

   g ( )2 0 1( ) ≥   (classical fi elds), (L2.4)

where we emphasize that this result has been derived using classical wave theory. In eq. 
(L2.4), equality with 1 is achieved if the input intensity is perfectly stable with no fl uc-
tuations, while for fl uctuating intensities the second-order coherence is greater than 1. 

 The closest experimental realization of a stable, classical wave is laser light. Light 
from a stable laser yields   g ( )2 0 1( ) =  , no matter how highly attenuated it is. For “chaotic” 

    2.     A way to motivate the validity of this inequality is to note that the variance of the intensity must be a 
positive number. Since the variance can be written as   ΔI I I2 2 2 0= − ≥  , it must be true that   I I2 2≥  . 
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light (e.g., light from a thermal source, such as a vapor lamp) it can be shown that 
  g ( )2 0 2( ) =   [L2.3].    

   L2.2.2    Semiclassical Theory of Photodetection   

 So far we have been speaking about correlations between the intensities of the fi elds 
leaving the beam splitter. In an experiment, however, one does not measure the inten-
sity directly, but rather the photocurrent from a detector. It is then necessary to model 
the photodetection process. Since to this point we have been discussing classical fi elds, 
it is most appropriate to use a model that treats the fi eld classically. The most rigorous 
theory of this sort is the semiclassical theory of photoelectric detection, in which the 
fi eld is treated classically and the photodetector is treated quantum mechanically. We 
describe this theory in chapter 15, but the details are not important for our discussion 
here. Here we’ll describe enough of the theory to explain the measurements performed 
in this lab 

 In the semiclassical theory of photoelectric detection, it is found that the conversion 
of continuous electromagnetic waves into discrete photoelectrons is a random process. 
The probability of obtaining a single photocount from a single detector (for example, 
detector -  B ), within a short time window   Δ   t,  is proportional to the average intensity of 
the fi eld striking that detector:

   P I t tB B B= ( )η Δ   , (L2.5)

where   ηB   is a constant that characterizes the detection effi ciency of detector -  B .   3    Equa-
tion (L2.5) tells us that the probability of detection increases with increasing intensity. 
Furthermore, this equation says that the detection probability is linearly proportional 
to the width of the time window, so the detection rate is constant if the intensity is con-
stant. These results are reasonable. 

 The joint probability of getting a photocount (within a short time widow   Δ   t ) at 
detector -  B’ , and then after a time  τ  obtaining a photocount at detector -  B  (also within a 
time widow   Δ   t ) is given by

   P I t I t tBB B B B B′ ′ ′( ) = +( ) ( )τ η η τ Δ 2  . (L2.6)

Combining eqs. (L2.1), (L2.5), and (L2.6), we fi nd that

   g
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τ

  . (L2.7)

This tells us that if we measure the probability of joint and individual photocounts at 
detectors  B  and  B ′  , we can determine the degree of second-order coherence. 

    3.     You can compare eq. (L2.5) to eq. (15.56). 
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 Again, we are most interested in   g ( )2 0( ) . Using eqs. (L2.4) and (L2.7), we fi nd that 
for classical fi elds, the measured degree of second-order coherence must be greater 
than or equal to 1:

   g
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0
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Here   PBB′ ( )0   is the probability of coincidence detections (within   Δ   t ) at  B  and  B ′  . Fur-
thermore, we see that if the joint probability factorizes,   P P PBB B B′ ′( ) =0  , which occurs 
when the detections at  B  and  B ′   are completely uncorrelated, then   g ( )2 0( )  is minimized 
and is equal to 1. 

 Experimentally, we must express the probabilities in terms of measured count rates. 
For example, the probability of a detection at  B  in a short time interval   Δ   t  is simply 
given by the average rate of detections, multiplied by   Δ   t . The average rate of detections 
at  B  is just the number of detections   NB  divided by the counting time  T  that we are 
averaging over. The probabilities for  B  detections and  BB ′   coincidences are given 
 similarly:
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Here   NBB ’  is the number of coincidence counts between the two detectors. Substituting 
eq. (L2.9) into eq. (L2.8), we fi nd that

   (2) '

'
(0) BB

B B

N Tg
N N t

  (2-detector). (L2.10)

Here we note that this expression corresponds to 2-detector measurements of   g ( )2 0( ) , 
which must be distinguished from the 3-detector measurements we will discuss 
below. 

 Just to be perfectly clear about how the variables in eq. (L2.10) are related to exper-
imentally measurable quantities:   Δt  is the coincidence time window determined by the 
resolution of the coincidence unit (typically about 10 ns),  T  is the counting interval 
(typically greater than 0.1 s),   NB  and   NB′  are the numbers of singles counts in time  T , 
and   NBB ’  is the number of coincidence counts in that same time. 

 We can summarize what we have learned about classical fi eld statistics as fol-
lows. It is possible to measure the degree of second-order coherence between the 
fi elds leaving a beam splitter,   g ( )2 0( ) , by measuring the probability of joint and 
individual photocounts at detectors  B  and  B ′  . The second-order coherence must sat-
isfy the inequality   g ( )2 0 1( ) ≥  . When the photocounts at  B  and  B ′   are completely 
uncorrelated   g ( )2 0 1( ) =  , which occurs when the input fi eld to the beam splitter is a 
perfectly stable wave, such as the light from a laser. If the input fi eld fl uctuates, then 
  g ( )2 0 1( ) >   indicating positive correlations between the photocounts; such fi elds are 
said to be “bunched.” 

 Since   g ( )2 0( )  cannot be less than 1, we are left with the conclusion that for classical 
fi elds the measured photocounts at  B  and  B ′   cannot be anticorrelated. This makes sense, 
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because a beam splitter simply splits a classical input fi eld into two identical copies. 
These output fi elds either fl uctuate together (positive correlation) or don’t fl uctuate at 
all (no correlation). It is not possible for the intensity of one to decrease while the inten-
sity of the other increases (anti-correlation, or “anti-bunching”).    

   L2.2.3    Three-Detector Measurements   

 We are also interested in performing measurements of   g ( )2 0( ) , conditioned on the 
measurement of a photocount on a third detector. In such a measurement all probabili-
ties are conditioned upon a detection at  A . In this case, in place of eq. (L2.7) we have 
(at   τ = 0 )

   g
P

P P
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AB AB

( ) ( )2 0
0

0 0
=
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( ) ( )

′

′
  (3-detector), (L2.11)

where   PABB′ ( )0   is the probability of threefold coincidence detection, and   PAB 0( )  and 
  PAB′ ( )0   are the probabilities of coincidence detection between detector- A  and detectors 
 B  and  B ′  , respectively. 

 Since we are not interested in any events unless detector  A -fi res, the number of 
detections at  A ,   NA , serves as the total number of trials, which we can use to normalize 
our probabilities:
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Using these probabilities,   g ( )2 0( )  for the three-detector measurements becomes

   g
N N
N N

A ABB
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( )2 0( ) = ′

′
  (3-detector). (L2.13)

For classical fi elds, it is still the case that   g ( )2 0( )  as expressed in eq. (L2.13) must 
satisfy   g ( )2 0 1( ) ≥   [L2.1].    

   L2.2.4    Quantum Fields   

 In order to describe the degree of second-order coherence for an arbitrary quantum 
fi eld, it is necessary to have a full quantum theory of fi elds. Such a theory is described 
in chapter 16, and applied to   g ( )2 0( )  in complement 16.A. However, for the special 
case of a single-photon fi eld we can easily understand what the quantum result must 
be. To quote from Grangier et al. in ref. [L2.1], “a single photon can only be detected 
once!” Hence, if a single quantum of light is incident on the beam splitter, it should 
be detected at the transmission output, or at the refl ection output, but not both: there 
should be no coincidence detections between the two outputs. In other words, for a 
single-photon incident on the PBS in fi g. L2.1, we must have   ' 0BBN   in eq. (L2.10), 



 456   •  L A B O R AT O R I E S

and   NABB′ = 0  in eq. (L2.13). In both cases quantum mechanics predicts   g ( )2 0 0( ) =   for 
this single-photon fi eld. 

 There is a subtlety that we need to consider. In order to measure   g ( )2 0 0( ) =  , it is 
necessary to have a single photon incident on the PBS in fi g. L2.1. By using our spon-
taneous parametric downconversion source, this is achieved conditionally upon the 
detection of an idler photon at detector- A . Thus, we must perform a three-detector 
measurement in order to see   g ( )2 0 0( ) =   with this source. Using the same source with-
out conditioning, the fi eld incident on the PBS is  not  a single-photon fi eld; a measure-
ment of   g ( )2 0( )  on this fi eld should yield   g ( )2 0 1( ) ≥  .   4    

 Finally, in a real experiment we cannot expect to measure   g ( )2 0 0( ) =  , because there 
will always be some accidental three-fold coincidence counts   NABB′ . By knowing quan-
tities such as the effective coincidence window   Δt , the counting time  T , and the average 
count rates on the detectors, we can predict the number of accidental counts, and hence 
determine an expected value for   g ( )2 0( )  given our experimental parameters. For a fur-
ther discussion of how this expected value is calculated, see ref. [L2.2].     

   L2.3    ALIGNING THE IRISES AND THE BEAM SPLITTER   

 In lab 1 you examined the behavior of a spontaneous parametric downconversion 
source. You learned how to maximize the coincidence count rate between detectors  A  
and  B , and here we will assume that this part of the alignment has already been com-
pleted. Your task in this lab will be to insert a beam splitter in the signal beam, and to 
align detector  B ′  . Once this is done you’ll be able to measure   g ( )2 0( ) . 
   
       •      Make sure the detectors are off.   
      •     Insert a beam block in the pump beam.  
      •     The fi ber from the  B  collection optics leads to a fi ber-fi ber connector, where it joins 

another fi ber which leads to the fi lters and a SPCM. Unscrew the fi ber coming from 
the  B  collection optics, and connect it instead to the fi ber leading from the alignment 
laser, as shown in fi g. L2.3.  Take care when you do this.       

      •     Turn on the alignment laser. Light from this laser will shine backward through the 
 B -fi ber, and emerge as a collimated beam from the fi ber-coupling lens attached to the 
end of the fi ber, see fi g. L2.3.   5    The laser light appears dim because it is at a wave-
length your eye is not very sensitive to. If you stick white paper in the beam you 
should be able to see it with the room lights out. You should be able to see it very 
brightly using a CCD camera and monitor. If the laser light is not shining onto the 
downconversion crystal, detector- B  is not properly aligned, and you’ll need to com-
plete this alignment (see lab 1) before continuing.  

    4.     You may be surprised that a classical fi eld having a very low photon fl ux, such as a highly attenuated 
laser, cannot give   g ( )2 0 0( ) =  . However, as described in chapters 12 and 16, the light from a laser is described 
quantum mechanically by a “coherent state.” No matter how highly attenuated it is, even to the level of just 
one photon per second or less, there is always a nonzero probability for laser light to contain two or more 
photons. This means that   NBB′ ≠ 0 , allowing   g ( )2 0 1( ) =   [eq. (L2.10)]. 

    5.     Recall that the alignment laser puts out several milliwatts of light at about 800nm. This light can be 
dangerous to both your eyes and the SPCMs, so use care. 
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      •     First you want to center two irises on the alignment beam. One should be about a 
foot (maybe a bit more) away from the detector, and the other about a foot away 
from the downconversion crystal. Either by eye, or using the CCD camera, adjust 
the height and position of the irises so that the alignment beam passes through their 
centers. You should be able to close the irises down to about 2–3 mm and still get 
nearly all the beam through. Once the irises are centered on the beams, lock them to 
the table.  

      •     Make sure that the iris near the downconversion crystal does not block the beam going 
to the  A  detector. You can check this by letting the blue beam through and seeing 
where it hits the iris. The  A  beam should make roughly the same angle with the pump 
as the  B  beam, so you should have a pretty good idea of where it’s at with respect to 
the iris.  

      •     Insert the polarizing beam splitter (PBS) about 3–4 inches away from the  B  collec-
tion optics (fi g. L2.2). Make sure it is oriented so that light coming from the down-
conversion crystal will be refl ected away from the beam going to detector- A . Make 
sure that the beam passes through the center of the beam splitter.  

      •     Orient the beam splitter so that its face is perpendicular to the beam. Do this by look-
ing at the back-refl ection from the beam splitter, which shines back toward the col-
lection optics (this beam will be VERY dim, so you will probably need the CCD 
camera to see it). Orient the beam splitter so that this back-refl ection goes straight 
back on top of the incident beam. Double check that the beam is still centered on the 
beam splitter, then screw the beam splitter mount to the table.  

      •     Insert the half-wave plate between the PBS and the downconversion crystal, about an 
inch or two from the PBS. Again, center it, orient it perpendicular to the beam, and 
screw it to the table.   
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  Fig L2.3     Aligning the irises.   
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        L2.4    ALIGNING THE B   DETECTOR   

 You will be aligning the  B ′   detector so that it collects light from the same beam as the 
 B  detector. 
   
       •     Place the mount with the  B ′   collection optics on the refl ection side of the beam split-

ter, about an equal distance from the beam splitter as the  B  collection optics (fi g. 
L2.2). Don’t screw it down yet.  

      •     Unscrew the  B -fi ber from the alignment laser, and reconnect it to the fi ber leading to 
SPCM  B . Connect the  B ′  -fi ber to the alignment laser, as shown in fi g. L2.4. At this 
point the beam won’t go back through the irises.     

      •     The task now is to get the alignment laser to shine back through the irises and onto 
the downconversion crystal. By moving the mount with the  B ′   collection optics side-
ways (perpendicular to the beam), rotating it, and adjusting its vertical tilt, position it 
as well as you can to shine the light back through the two pinholes. The CCD camera 
will be helpful for this. It won’t be perfect, but the better job you do on this coarse 
alignment, the easier the fi ne alignment will be.  

      •      Alignment Hint:  Slide the mount back and forth sideways to center the beam on the 
fi rst iris (closest to the beam splitter). Adjust the tilt of the mount to center the beam 
on the second iris. Iterate back and forth between these two adjustments.  

      •     Once you’ve got it reasonably well aligned, screw it to the table.  
      •     Adjust the vertical and horizontal tilt of the  B ′   collection optics to perfectly center the 

beam on the iris closest to the beam splitter.  
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  Fig L2.4     Aligning detector- B ′  .   
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      •     Adjust the vertical and horizontal tilt of the beam splitter to center the beam on the 
iris closest to the downconversion crystal.  

      •     Alternate back and forth between the last two steps, always adjusting the collection 
optics to center the beam on the fi rst iris, and the beam splitter to center the beam on 
the second. When the beam is well centered on both irises, you’re done.  

      •      Turn off the alignment laser .  
      •     Unscrew the  B ′  -fi ber from the alignment laser, and reconnect it to the fi ber leading to 

SPCM  B ′  .  
      •     Run the LabVIEW program “Coincidence.vi”.  
      •     Set  Experimental Setup  to  g(2) 3-det,  and  Update Period  to 0.2s. In the pane that 

displays the graphs, choose the  AB & AB ′   tab.  
      •     The  ABB ′  Coincidence Window (ns)  parameter tells the computer the effective 

time window for the three-fold coincidence determination. In three-detector mea-
surements this parameter is needed to calculate the expected value for   g ( )2 0( ) . Ask 
your instructor for the precise value; it should be on the order of 5–10 ns.  

      •      Make sure that the lights are out , and then turn on the detectors. Open the irises 
wide, and unblock the blue pump beam.  

      •     Slowly rotate the wave plate in front of the beam splitter while monitoring the count 
rates. You should notice that for some wave plate angles you get lots of  B  and  AB  
counts, but almost no  B ′   and  AB ′   counts. For other angles you get lots of  B ′   and  AB ′   
counts, but almost no  B  and  AB  counts.  

      •     Rotate the wave plate to maximize the  AB  counts. Adjust the tilt on the  B  mount to 
maximize this coincidence rate.  

      •     Rotate the wave plate to maximize the  AB ′   counts. Adjust the tilt on the  B ′   mount to 
maximize this coincidence rate.  

      •     The maximum  AB  and  AB ′   count rates should be approximately the same (hope-
fully within 10–20%). If this isn’t the case, there are a few possible problems. The 
fi rst is that either detector- B  or  B ′   is not well aligned. You can try tweaking the 
alignment to improve things, but you might need to go back and realign. Other 
possibilities are that the fi ber coupling lens is better aligned for one of the detec-
tors than the other, or the end of one of the fi bers has dirt on it. If you get drasti-
cally different maximum count rates for  AB  and  AB ′  , ask your instructor what 
you should do.      

     

             Q1: When the wave plate is set to 0°, are the  B  or  B ′   counts maximized? How far 
do you have to rotate the wave plate in order to maximize the other count rate? 
Explain why the count rates change the way they do when the wave plate is 
rotated.  

            Q2: The polarizing beam splitter refl ects vertically polarized light, and transmits 
horizontally polarized light. What polarization is the light emerging from the 
downconversion crystal?   
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        L2.5    MEASURING  g  (2) (0) FOR A SINGLE-PHOTON STATE   

          •     Rotate the wave plate to roughly equalize the  AB  and  AB ′   count rates.  
      •     Increase  Update Period  to 1 s.   
   
 You should notice that there are very few  ABB ′   three-fold coincidences. 
   
       •     In the pane with the plots, click on the  g(2)(0)  tab. In the pane labeled  g(2) Measure-

ments,  click  Clear Buffer  and get an idea of the average value of   g ( )2 0( ) .   
   
 The   g ( )2 0( )  measurements will fl uctuate signifi cantly, but hopefully they should 
always be less than one. Now you should be ready to take data. 
   
       •     In the  Data Taking Parameters  pane set  Update Period (Data Run)  to 10 s, and 

 Number of points  to 10. Click the  Take Data  button.   
   
 Hopefully you’ll fi nd a value of   g ( )2 0( )  that is several standard deviations below 1; if 
you don’t, ask your instructor for help. Calculate how many standard deviations your 
value for   g ( )2 0( )  is below 1. 
   
       •     Take several more data sets with different parameters for  Update Period (Data 

Run)  and  Number of points . Always take at least 10 points in order to assure rea-
sonable statistics.   

   
 Note that while the ideal theoretical prediction for   g ( )2 0( )  of a single photon is 0, 
experimentally you can’t achieve this. If you measure   g ( )2 0 0( ) =  , then you need to 
increase the counting time, or align things better to get higher count rates to get a 
nonzero   g ( )2 0( ) . Try and adjust the experimental parameters so that you get a data set 
for which the standard deviation of   g ( )2 0( )  is several times smaller than the average 
value of   g ( )2 0( ) . In other words, try to get a measurement of   g ( )2 0( )  which is different 
from 0 by more than one standard deviation. 
   

             Q3: Explain why you shouldn’t measure a value of 0 for   g ( )2 0( ) .  

            Q4: Does your measured value for   g ( )2 0( )  agree with the “expected” value (to 
roughly within the error of the measurement) returned by the computer? If not, 
what might be wrong?      
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        L2.6    TWO-DETECTOR MEASUREMENT OF  g  (2) (0)   

 When you’ve completely fi nished making measurements on the single-photon state, 
you are ready to show that a single beam of your downconversion source behaves clas-
sically. 
   
       •     Set  Experimental Setup  to  g(2) 2-det,  and  Update Period  to 1.0 s [this plays the 

role of  T  in eq. (L2.10)]. The computer uses the  BB ′  Coincidence Window (ns)  
parameter as   Δ   t  in this same equation; ask your instructor what value to use for this 
parameter (it should be on the order of 10 ns, but won’t necessarily be the same as 
you used for 3-detector measurements). In the pane that displays the graphs, choose 
the  g(2)(0)  tab.  

      •     Adjust the half-wave plate so that the  B  and  B ′   counts are approximately equal.   
   
 The   g ( )2 0( )  measurements will fl uctuate signifi cantly, but hopefully they should 
always be around one, or greater. 
   
       •     Click  Clear Buffer  and get an idea of the average value of   g ( )2 0( ) .   
   
 Now you should be ready to take data. 
   
       •     In the  Data Taking Parameters  pane set  Update Period (Data Run)  to 10 s, and 

 Number of points  to 10. Click the  Take Data  button.   
   
 Hopefully you’ll fi nd a value of   g ( )2 0( )  that is greater than or equal to 1. Likely you 
will fi nd that   g ( )2 0( )  is equal to 1 to within the error of the measurement.   6    
   
       •     Take several more data sets with different parameters for  Update Period (Data 

Run)  and  Number of points . Always take at least 10 points in order to assure rea-
sonable statistics.   

   
 Hopefully in this lab you’ve shown that if you condition your measurements on the 
presence of a photon in the idler beam, you produce a single-photon state in the signal 
beam. This is a highly nonclassical state. If you don’t condition your measurements, 
your signal beam behaves classically. 
   

             Q5: Why don’t you obtain the same value for   g ( )2 0( )  when performing two- and 
three-detector measurements?   

   

    6.     In an ideal world we would expect to measure   g ( )2 0 2( ) =   for this thermal-like beam, however, we 
would need much higher time resolution (on the order of 10s of femtoseconds) to achieve this result. Given 
the nanosecond resolution that we have, the expected result is   g ( )2 0 1( ) =  . See ref. [L2.3] for more details.  
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         LAB 3 

Single-Photon Interference  

  LAB TICKET 

         Referring to  fi g.  L3.1  , if we measure the number of output photons on detector- B ,   NB  , 
in a given time interval, we’ll fi nd that   NB  varies sinusoidally with   —we’ll see inter-
ference. The visibility  V  of this interference pattern is defi ned as

   V
N N
N N

B B

B B
=

−
+

max min

max min
  , (L3.1)

where   NB max  is the maximum number of output counts (as   φ  is varied), and   NB min  
is the minimum number. Assuming vertically polarized input photons, calculate the 
visibility of the measured pattern on detector  B , as a function of the angle of wave-
plate 1,    1 .    

   L3.1    INTRODUCTION   

 In lab 2 you showed that it was possible to create a beam that consists of individual 
photons. In this laboratory you will show that if these individual photons are passed 
through an interferometer, they will interfere with themselves. Indeed, it is possible 
to do both of these experiments at the same time: You’ll be performing an experiment 
which simultaneously shows both the wave-like and particle-like aspects of light. 

 You’ll be using the polarization interferometer (PI) described in  chapters  2  and  3  , 
and depicted in  fi g.  L3.1  . You should already be familiar with the workings of this 
interferometer, so we will not go into detail about how it works here. A diagram of the 
complete experimental apparatus is shown in  fi g.  L3.2  , while a picture of the beam 
displacing polarizers (BDPs) is shown in  fi g.  L3.3  .        

 Recall that in lab 2 we were able to show that the signal beam contained individual 
photons, as long as we conditioned detections at  B  and  B ′   on the detection of an idler 
photon at  A . This was done by looking for a lack of coincidences between two detectors 
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monitoring the outputs of a beam splitter. Note that in  fi g.  L3.2  , we still have two detec-
tors at the outputs of a polarizing beam splitter (PBS), and a detector for the idler beam. 
The main difference from lab 2 is that the beam splitter is now part of the PI. 

 As far as the output detectors are concerned, the PI is a beam splitter; it takes one 
input beam and creates two output beams. The splitting ratio of this “beam splitter” 
depends on the phase of the interferometer. For some phases most of the light is trans-
mitted, while for others most of the light is refl ected. We can even adjust the interfer-
ometer phase so that the beam splits equally. 

 In lab 2 you measured the quantity   g ( )2 0( )  with a beam splitter adjusted for a 50/50 
splitting ratio. As proved there, however,   g ( )2 0( )  is independent of the splitting ratio. You 
can use a 50/50 beam splitter, or an 80/20 beam splitter, and you will always measure 
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  Fig L3.2     The experimental apparatus, with the polarization interferometer (PI) of fi g. L3.1 in 
the dashed box. Here   /2 denotes a half-wave plate, DC denotes the downconversion crystal, 
FFC denotes fi ber-to-fi ber coupler, and SPCMs denotes the single photon counting modules.   
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  Fig L3.1     The polarization interferometer. Here   /2 denotes a half-wave plate, BDP denotes 
a beam displacing polarizer, and PBS denotes a polarizing beam splitter. The phase of the 
interferometer    is adjusted by tilting one of the BDPs.   
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  g ( )2 0( )  to be the same. The only caveat is that you can’t get too close to 100/0 or 0/100, 
because then one of the detectors doesn’t get much light, both the numerator and denom-
inator of   g ( )2 0( )  get small, and experimentally   g ( )2 0( )  is not well behaved. 

 The upshot of all this is that we have all the information we need to measure   g ( )2 0( )  
at the same time that we measure the interference pattern. It’s all the same data, acquired 
at the same time, but looked at in slightly different manners. You’ll be able to see both 
wave-like behavior (interference), and particle-like behavior [  g ( )2 0 1( ) <  ] in the same 
experiment. 

 Before describing the experiment, I’ll note that there are other interesting interfer-
ence experiments that can be performed using a spontaneous parametric downconver-
sion source; see ref. [L3.1] for some examples.    

   L3.2    ALIGNING THE POLARIZATION INTERFEROMETER   

   Note to instructors: I would suggest that, at the very least, before students come to 
the laboratory the BDPs should be properly rotated in their mounts, so that they will 
properly separate and recombine the beams to form an interferometer. To save lab time 
you could pre-align the interferometer and equalize the path lengths, and have students 
begin the lab starting at section L3.4 .  

      
  Fig L3.3     The beam displacing polarizers (BDPs) sandwiched around a half-wave plate. The 
large black “knob” on the mount on the right is a stepper motor. It allows the computer to 
tilt the mount to adjust the phase of the interferometer.   
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 We’ll assume that the alignment of the crystal, and of detectors  A  and  B , as described 
in lab 1, has already been performed. 

 Your PI consists of three half-wave plates, two BDPs, and a PBS, as shown in  fi g. 
 L3.1  . From left-to-right in that fi gure, we will refer to the wave plates as wave-plate 1, 
wave-plate 2, etc. Before beginning the alignment, arrange these components on the 
table, and inch or so apart, roughly as they will be placed in the experiment (see  fi g. 
 L3.3  ). The point here is to get an idea of how much space the interferometer will 
occupy. Line the components up parallel to the path of the beam headed to detector- B  
(but not yet in the beam), with the idea that you could slide them into their appropriate 
place along the beam. 
   
       •      Make sure the detectors are off and the blue pump beam is blocked.   
      •     Connect the fi ber leading from the  B  collection optics to the alignment laser, as 

shown in  fi g.  L3.4  . Turn on the alignment laser.      
      •     Before inserting any of the polarization interferometer components, you want to 

align the two irises in  fi g.  L3.4   that are closest to the downconversion crystal. They 
should be centered on the alignment laser beam, as described in lab 2. You want these 
two irises to be a foot or so apart from each other, but they also both need to be 
located between the downconversion crystal and the PI. Furthermore, you don’t want 
them to block the beam headed to detector- A .   

   
   You’ll see in  fi g.  L3.4   that the effect of the PI is to displace the beam coming from 

the downconversion crystal to detector- B . The amount of displacement is determined 
by the BDPs. Ask your instructor how far this displacement is; it’s typically on the 
order of about 4 mm. As can be seen in  fi g.  L3.4  , when looking from the perspective of 
detector- B  toward the downconversion crystal, detector- B  will need to move to the left. 
   
       •     Note the location of detector- B  with respect to the ruler it is pushed up against (see 

 fi g.  L1.3  ). Unscrew detector- B  from the table, slide it to the left by 4 mm (or what-
ever the displacement of your BDPs is), and then screw it back to the table. For the 
moment, do  not  adjust the tilt of the detector mount.  

      •     Begin assembling the PI by inserting the BDP which goes closest to detector- B . 
Insert it in its proper location along the beam path, leaving space for the other 
components. This should be the BDP with the stepper motor on its horizontal tilt. 
Note from  fi g.  L3.4   that when looking from detector- B  toward the downconver-
sion crystal, the alignment laser beam should enter the BDP toward its left edge. 
One beam (polarization) will go straight through, and the other will be defl ected 
to the right by 4 mm, and then emerge parallel to the fi rst beam. If the BDP does 
not displace this second beam horizontally to the right, you will need to rotate it 
in its mount so that it does ( double check with your instructor before doing 
this ).  

      •     Orient this BDP so that its surfaces are perpendicular to the alignment laser (do this 
by looking at the back refl ection from the fi rst surface). Check that both beams 
emerge from the BDP without clipping its edges. Once both beams are emerging 
unclipped, and the faces of the BDP are roughly perpendicular to the beam, screw its 
mount to the table.  
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  Fig L3.4     Aligning the polarization interferometer. Here Ir denotes an iris.   

      •     There should now be two beams emerging from the BDP separated by approximately 
4 mm. The beam on the right (looking from detector- B  toward the downconversion 
crystal) should be going approximately through the two irises, and onto the down-
conversion crystal, as in  fi g.  L3.4  .  

      •     If the alignment beam is not centered on the two irises, unscrew detector- B  from the 
table, and gently slide it along the ruler to center the beam on the irises. Do not adjust 
the tilt of its mount in order to center the beams. Once the beam is centered on the 
irises, screw the mount back to the table. Double check that none of the beams enter-
ing or emerging from the BDP are clipped (slightly move the BDP if necessary).  

      •     If simple translation of detector- B  is not suffi cient to get the alignment beam travel-
ing back through the center of the irises, you may need to rotate the BDP in its mount 
( double check with your instructor before doing this ).  

      •     Referring to  fi gs.  L3.1  and  L3.4  , insert the PBS, wave-plate 3, and the third iris. 
Center them and orient them perpendicular to the alignment beam. Rotate the wave 
plate so that its axis is at 22.5°, which should equalize the intensities of the beams 
emerging from the BDP.  

      •     Insert wave-plate 2, and rotate its axis to 45°.  
      •     Insert the second BDP so that both beams enter without clipping, and orient it per-

pendicular to the beams. This BDP should be rotated in its mount so that both of the 
incoming beams are recombined into a single output beam emerging from the right 
side of the BDP (looking from detector- B  toward the downconversion crystal) and 
passing back through the irises, as shown in  fi g.  L3.4  . Slight adjustment of the rota-
tion angle of wave-plate 2 might help to get all of the left beam to defl ect to the right. 
If this doesn’t help, you may need to rotate the BDP in its mount ( double check with 
your instructor before doing this ).  
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      •     Insert wave-plate 1, and orient its axis at 22.5°.  
      •     Insert a linear polarizer between wave-plate 1 and the downconversion crystal. Ori-

ent this polarizer to be either vertical or horizontal. Place a screen behind it so that 
you can see the alignment beam.  

      •     Open the iris apertures.  
      •     Very slowly adjust the horizontal tilt of the BDP closest to the downconversion 

crystal (the BDP with the manual horizontal adjustment knob), which scans the 
interferometer phase, while looking at the screen. You should see the beam on the 
screen getting alternately brighter and darker; in other words, you should observe 
interference.  

      •     At this point you’d like to maximize the contrast (visibility) of the interference. Ide-
ally you would like to see the beam get uniformly brighter and darker as the phase 
of the interferometer is adjusted; it should look like it’s “breathing”. It’s easier to 
adjust things by looking at a dark fringe and trying to minimize its intensity. You can 
try slight adjustments of the polarizer or wave-plate rotation angles to improve the 
visibility.  

      •     If instead of a single fringe, you see alternating bright and dark fringes that move as 
the phase is adjusted, somewhere along the line the interferometer beams are tilted 
with respect to each other. You can try adjusting the vertical tilt of the BDPs, or rotat-
ing the BDPs in their mounts to correct this ( double check with your instructor 
before doing this ).  

      •     Once you’ve improved the visibility of the interferometer as best you can, adjust the 
horizontal tilt of the BDP so that it is roughly perpendicular to the beams.   

   
   If the interferometer alignment is being performed by students as part of the lab, the 

material in sec. L3.4 should be completed at this point .  
   
       •     Turn off the alignment laser, and reconnect the  B  fi ber to the  B  SPCM.  
      •     Connect the  B ′   fi ber to the alignment laser, and then turn the laser back on.  
      •     Align the  B ′   detector using the procedure described in lab 2. This beam should pass 

through the centers of all three irises. Do your best to coarsely align this detector 
before adjusting the PBS. As much as possible, try to get the beam through all three 
irises by simply translating and tilting the  B ′   detector mount.  

      •     Turn off the alignment laser, and reconnect the  B ′   fi ber to the  B ′   SPCM.   
   

        L3.3    EQUALIZING THE PATH LENGTHS   

 The interferometer is now nearly aligned. The last step is to equalize the path 
lengths of the two interferometer arms. This is necessary in order to see interference 
with the downconversion source, because it has a very short coherence length (see 
complement 2.A). 
   
       •     Run the LabVIEW program “Coincidence.vi”. Set  Experimental Setup  to  Interfer-

ence , and  Update Period  to 0.2s. In the pane with the graphs, click on the  AB  &  AB ′   tab.  
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      •     You should see that the  Pause Stepper  button is grayed (“pushed-in”), and the  Cur-
rent position ( μ steps)  indicator is not changing.  

      •     If the  Current position ( μ steps)  indicator does not read 26000, set  Set position  to 
26000, and then click the  Go to Set Position  button. The stepper motor should move 
to this position, and the  Current position ( μ steps)  indicator should read 26000. This 
is the center of travel for the stepper motor, and you want to adjust the path lengths 
of the arms so that they are roughly equal when the stepper is at this location.  

      •      Make sure the room lights are off , and turn on the detectors.  
      •     Set the wave plate angles as follows:   θ1 0= o ,   θ2 45= o  and   θ3 22 5= . o . You should see 

roughly equal numbers of  AB  and  AB ′   coincidence counts. If you don’t, try to tweak 
the tilt of detectors  B  and  B ′   to improve things. You can also slightly rotate wave-
plate 3 to better equalize the count rates, but you don’t want this wave plate to get too 
far from   θ3 22 5= . o .  

      •     Now rotate wave-plate 1 to   θ1 22 5= . o . At this point, doing so will probably have very 
little effect on the coincidence count rates.  

      •     Slowly adjust the horizontal tilt of the BDP closest to the downconversion crystal 
(the BDP with the manual horizontal adjustment knob), while observing the  AB  and 
 AB ′   coincidence counts (observing the  B  and  B ′   singles counts will work as well).   

   
   If the path lengths of the two arms are off by more than the coherence length, you 
should see no interference; adjusting this tilt, which adjusts the interferometer phase, 
will have essentially no effect on the counts. If the path lengths are within a coherence 
length you will notice that the counts oscillate as the phase is adjusted. The  AB  and 
 AB ′   counts should oscillate out of phase with each other: as the  AB  counts increase, 
the  AB ′   counts will decrease. As you scan the path length, you will see that at fi rst the 
amplitude of the oscillations is small, with low contrast, because the path lengths are 
off by slightly more than a coherence length. When the path lengths are exactly equal 
you should see large amplitude, high contrast oscillations. The  AB  and  AB ′   counts 
should alternately drop to nearly 0. Continuing to scan will take you beyond the coher-
ence length, so the oscillation contrast will once again decrease. The idea is to adjust 
the lengths to be equal, so that the contrast is largest. 
   
       •     Slowly scan the horizontal tilt of the BDP to fi nd maximum contrast in the oscillation 

of the  AB  and  AB ′   counts. If tilting one way doesn’t work, go back and tilt the other 
way. Don’t be afraid to scan a long way.  

      •     If large tilts in either direction do not yield interference, double check that your wave 
plates are adjusted to the correct angles:   θ1 22 5= . o ,   θ2 45= o  and   θ3 22 5= . o .  

      •     If you still don’t see interference, you probably need to go back to the steps above 
and double check the alignment of the interferometer with the alignment laser. If the 
interferometer is properly aligned with the laser, the only adjustments you should use 
to obtain interference with the downconversion are the wave-plate angles and the 
horizontal tilt of the BDPs.  

      •     Once you have adjusted the path lengths to be equal, and maximized the contrast by 
tilting the BDP, there are a few tweaks you can do to improve the contrast further. 
Slight adjustment of the wave-plate angles may improve the contrast. Also, closing 
one or more of the iris apertures may improve the contrast, but this will also reduce 
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the overall count rates. Ideally, you’d like to get a visibility of 90% or better, but even 
if you only manage 70%, you’ll still convincingly see single-photon interference.   

   

        L3.4    THE POLARIZATION INTERFEROMETER   

   Note to instructors: If students are aligning the interferometer themselves, this part of 
the laboratory should be completed at the point in sec. L3.2 where it is noted. If the 
interferometer is pre-aligned before students enter the lab, they should start here .  

 Looking at  fi g.  L3.1  , from left-to-right we will refer to the wave plates as wave-plate 
1, wave-plate 2, etc. 
   
       •      Make sure the detectors are off and the blue pump beam is blocked.   
      •     Connect the fi ber leading from the  B  collection optics to the alignment laser, as 

shown in  fi g.  L3.4  . Turn on the alignment laser.  
      •     Set the wave plate angles to   θ1 22 5= . o ,   θ2 45= o , and   θ3 22 5= . o .  
      •     Take a piece of white paper or an index card, and carefully insert it in different loca-

tions along the beam path so you can see where the beam goes. You’ll probably need 
to have the lights out for this, as the beam is not very bright. You should verify that 
the beam follows the path shown in  fi gs.  L3.1  and  L3.4  . In particular, you should 
notice two beams in between the BDPs.  

      •     While looking at the two beams between the BDPs, slowly rotate wave-plate 3. 

             Q1: What happens to the beams as this wave plate is rotated? Explain.   

       •     Rotate wave-plate 3 back to   θ3 22 5= . o .  
      •     Insert a linear polarizer between wave-plate 1 and the downconversion crystal. Ori-

ent this polarizer to be either vertical or horizontal. Place a screen behind it so that 
you can see the alignment beam. This beam may be very dim and hard to see; don’t 
worry about that for the moment.  

      •     Run the LabVIEW program “Coincidence.vi”. Set  Experimental Setup  to  Interfer-
ence , and  Update Period  to 0.2s.  

      •     Even though the detectors are not on, and you cannot see any counts, you are using 
the vi because it has some controls for the stepper motor that scans the interferometer 
phase. You’ll be using it to slowly sweep the phase, so that you can see the interfer-
ence pattern. When the program is fi rst initialized, the motor is not moving. You 
should see that the  Pause Stepper  button is grayed (“pushed-in”), and the  Current 
position ( μ steps)  indicator is not changing.  

      •     If the  Current position ( μ steps)  indicator does not read 26000, set  Set position  to 
26000, and then click the  Go to Set Position  button. The stepper motor should move 
to this position, and the  Current position ( μ steps)  indicator should read 26000.  

      •     Move the  Stepper increment  slider to 4, then click the  Pause Stepper  button to 
release it. The motor should now be moving, and the  Current position ( μ steps)  
indicator should be increasing.  

      •      Note: Don’t let the stepper motor scan too far . You can stop the motor from scanning 
by clicking the  Pause Stepper  button. Try to keep the stepper motor in the range 
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25000–27000. To get back to the center of the range, simply set  Set position  to 
26000, and then click the  Go to Set Position  button.  

      •     Observe the beam behind the polarizer. You should notice it getting alternately 
bright and dark as the phase of the interferometer is scanned to produce construc-
tive and destructive interference. If you don’t see this, it is likely that the wave plate 
or linear polarizer angles are not properly set—double check them. The contrast is 
most easily adjusted by rotating the linear polarizer or wave-plate 1. If you still 
have problems seeing interference, consult with your instructor about realigning 
the interferometer. 

             Q2: As the motor scans, you should notice that the beam stays bright in front of the 
polarizer, but gets brighter and darker behind it. Why is this?   

       •     Pause the stepper motor.  
      •     Remove the screen and the linear polarizer,  turn off the alignment laser , and recon-

nect the  B  fi ber to the  B  SPCM.   
   

    If you are completing the alignment of the polarization interferometer as part of your 
laboratory, return to sec. L3.2 to perform the alignment of the detector- B ′  . Then con-
tinue on to sec. L3.3, and equalize the path lengths of the arms of the interferometer .    

   L3.5    SINGLE-PHOTON INTERFERENCE AND THE QUANTUM 
ERASER   

 By now the path lengths of the arms of your interferometer are equalized, and you are 
ready to observe single-photon interference. 
   
       •      Make sure the lights are out , then turn on the detectors and unblock the blue beam.  
      •     Set the wave plate angles to   θ1 22 5= . o ,   θ2 45= o  and   θ3 22 5= . o .  
      •     Set  Update Period  to 0.2s, and in the pane with the graphs click on the  AB  &  AB ′   

tab.  
      •     Begin with the stepper motor at 26000, set the  Stepper increment  to 1 or 2, then 

unpause the stepper and let it scan. Again, don’t let it scan too far (keep the stepper 
motor in the range 25000–27000).  

      •     You should see interference fringes in the  B ,  B ′  ,  AB , and  AB ′   count rates as the 
motor scans. The visibility should be fairly high; hopefully it will be 90% or better. 
If the visibility of your fringe pattern is less than about 70%, there are a few things 
you can do: 

      1.     Tweak the tilt of the  B  and  B ′   mounts.  
     2.      The path lengths of the arms of your interferometer may not be equal. Try scan-

ning in both directions (you can use a negative  Stepper increment ) until you 
fi nd the point of equal path lengths. You want to perform your measurements near 
equal path lengths, where the visibility of the fringe pattern is maximized.  

     3.       Slight adjustments of the rotation angles of your wave plates may improve the 
visibility.  
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     4.      Close down one or more of the iris apertures, although this will decrease your 
overall count rates.   

     
   If none of these work, please ask for help from your instructor, as part of the alignment 
procedure may need to be redone. 
   
       •     Once you’ve observed high-visibility interference, set the  Data Taking Parame-

ters  to:  Update Period (Data Run)  1s,  Number of points  60,  Center stepper 
position ( μ steps)  26000 (or whatever the center of the highest visibility portion of 
your scan is),  Range to scan ( ± )  150, then click the  Take Data  button to acquire a 
data set.  

      •     Hopefully, your data should have between 2 and 3 full oscillations, with a high visi-
bility. If you don’t have between 2 and 3 oscillations, adjust  Range to scan ( ± ) , then 
take a new scan.  

      •     The singles counts  B  and  B ′   represent ordinary interference that you’d see with any 
light source. The coincidence counts  AB  and  AB ′   represent true, single-photon inter-
ference. This is shown by the fact that your measured values for   g ( )2 0( )  should be 
less than one. At the moment these   g ( )2 0( )  measurements probably fl uctuate greatly; 
don’t worry about this now, we’ll come back and clean them up shortly.  

      •     Take at least two more data sets, using   θ1 10= o  and   θ1 0= o . 

             Q3: After you leave the lab, calculate the measured visibilities of your interference 
patterns (use the  AB  coincidence data). Compare them to the prediction made 
in your lab ticket.  

            Q4: Compare the interference patterns you measured with   θ1 22 5= . o  and   θ1 0= o . 
Which setting has higher visibility? For which setting do you know the path of 
the photons through the interferometer? For which setting is the path information 
“erased”? Explain your observations in terms of complementarity (see sec. 5.6).   

       •     Now set your wave plate angles to   θ1 22 5= . o ,   θ2 45= o  and   θ3 0= o , and acquire 
another data set. 

             Q5: Compare the interference patterns you measured with   θ3 22 5= . o  and   θ3 0= o . 
Which setting has higher visibility? For which setting do your detectors provide 
you with information about the path of the photons through the interferometer? 
For which setting is the path information “erased”? Explain your observations 
in terms of complementarity (see sec. 5.6).        

        L3.6    “EXPERIMENT 6”   

 In sec. 3.7 we discussed experiment 6, which is shown in  fi gs.  3.7  and  3.8  . Now you 
will perform that experiment. Comparing the experiment on your table to  fi g.  3.8  , 
wave-plate 1 at   θ1 22 5= . o  is used to rotate the polarization of the photons from the 



LAB  3 : S INGLE-PHOTON INTERFERENCE   •   473 

downconversion crystal to place them in the state   +45  . The two BDPs (PA HV ’s) and 
wave-plate 2 at   θ2 45= o  are already set on your table. Wave-plate 3 with   θ3 22 5= . o  is 
used in combination with the PBS to implement the PA 45 . The only thing we need to 
do is adjust the interferometer phase so that all of the light exits from only one port of 
the PBS. 
   
       •     Set the wave plate angles to   θ1 22 5= . o ,   θ2 45= o  and   θ3 22 5= . o .  
      •     While observing the  AB  and  AB ′   coincidence counts, let the stepper motor run 

slowly to scan the interferometer phase. When you are near the point of highest vis-
ibility, and the interferometer output is such that  AB  maximized and  AB ′   minimized, 
stop the stepper.  

      •     Your interferometer is now adjusted so that nearly all the light is exiting to detector-
 B . It will now behave equivalently to experiment 6.  

      •     Using a piece of paper or index cards, block the beam in the interferometer that is 
closest to the edge of the table [as in  fi g.  3.7(a)  ]. 

             Q6: What do you notice about the  AB  and  AB ′   coincidence rates? Explain this 
behavior.   

       •     Unblock the beam closest to the edge of the table, and instead block the other beam 
[as in  fi g.  3.7(b)  ]. 

             Q7: What do you notice about the  AB  and  AB ′   coincidence rates? Explain this 
behavior.  

            Q8: With both beams unblocked, what do you notice about the  AB  and  AB ′   coinci-
dence rates? Explain this behavior.        

   Remember that when we fi rst discussed this experiment in sec. 3.7, you probably found 
its results to be counterintuitive.    

   L3.7    PARTICLES AND WAVES   

 Now it’s time to improve the   g ( )2 0( )  measurement, and truly demonstrate the wave-
like and particle-like behaviors of light in the same experiment. 
   
       •     Set   θ1  to an angle that you predict will yield an interference pattern with   V ≈ 0 9.  . (As 

discussed in sec. L3.1, if the visibility is too close to 1, experimental measurements 
of   g ( )2 0( )  will not be well behaved at interferometer phases where one of the detec-
tors receives almost no light due to destructive interference.)  

      •     Take a data run that scans over approximately 2 full oscillations, has at least 30 
points, and has an integration time of at least 10s per point. 

             Q9: What value do you measure for   g ( )2 0( ) ? Be sure to quote your error.   
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   Your coincidence count rates should show a high visibility interference pattern. This 
shows conclusively that the photons are behaving as waves as they traverse the inter-
ferometer. They must take both paths through the interferometer after they leave the 
fi rst BDP in order to display interference. Hopefully your measured values of   g ( )2 0( )  
will all be less than 1, with a mean value that is signifi cantly less than 1. As discussed 
in detail in lab 2, this shows that the photons are behaving as particles. They can only 
take one path after they leave the fi nal beam splitter. 

 You’ve done an experiment that unambiguously shows both the wave-like, and the 
particle-like nature of light.   

         L3.8  References  

    [L3.1]  E. J. Galvez et al., “Interference with correlated photons: Five quantum mechanics experi-
ments for undergraduates,” Am. J. Phys.  73 , 127 (2005).            



         LAB 4 

Quantum State Measurement  

  LAB TICKET 

      A beam consisting of individual photons, in the arbitrary polarization state   ψ   of eq. 
(L4.1), passes through a quarter-wave plate (QWP), then a half-wave plate (HWP), and 
fi nally a horizontal polarizer (the transmission port of a polarizing beam splitter), as 
shown in  fi g.  L4.1  . Show that for the wave-plate settings in  table  L4.1  , the probabili-
ties of a photodetection at detector- B  are given by eqs. (L4.2), (L4.5) and (L4.6). This 
proves that these wave-plate settings correspond to the desired measurements.    

   L4.1    INTRODUCTION   

 The procedure for determining the polarization state of a beam of individual photons is 
described in detail in complement 5.A. Here we’ll briefl y review that procedure. 

 The polarization state we wish to determine can be written as

   ,ia H be V   (L4.1)

so we must determine three real-valued quantities:  a ,  b  and   φ . By performing many po-
larization measurements in the  HV -basis, we can measure the probability that a photon 
will be horizontally polarized, given that the beam is prepared in state   ψ  :

   2 2.P H H a   (L4.2)

From this, and the fact that the state vector must be normalized, we can determine  a  
and  b :

   ,a P H   (L4.3)
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    21 .b a   (L4.4) 

 In order to determine   φ , we must perform polarization measurements in other bases. 
As shown in complement 5.A, the probabilities of measuring a +45 o  or a left-circularly 
polarized photon are

   
145 1 2 cos ,
2

P ab
  (L4.5)

 

    
P L abψ φ( ) = +( )1

2
1 2 sin .

  (L4.6)

We can combine these two equations, to fi nd that

   1 1
1

sin 2tan tan .
1cos 45
2

P L

P

  (L4.7)

  φ  can be uniquely determined on the interval   −( ]π π,   by knowing the signs of the nu-
merator and denominator of the fraction inside the inverse tangent.   1    

 The measurement procedure is then as follows. Many measurements of the polariza-
tion of identically prepared photons are performed in each of three different bases, in 
order to determine the probabilities   P H ψ( ) , P +( )45 ψ   , and   P L ψ( ) . From these 
measurements, eqs. (L4.3), (L4.4), and (L4.7) are used to determine the coeffi cients 
that describe the state   ψ   [eq. (L4.1)]. 

 Note that we are assuming that the polarization state is pure, so that it is possible to 
describe the state in terms of a state vector (ket). More generally, the state can be 
described by a density matrix (see complement 8.A). For information about recon-
structing the density matrix of a polarization state, see ref. [L4.1].   

   L4.1.1    Wave-Plate Angles   

 Measurements in the  HV -basis are easily performed using a polarizing beam splitter 
(PBS). Measurements in the ±45-basis can be performed by inserting a half-wave plate 
in front of the PBS, while measurements in the  LR -basis can be performed by inserting 
a quarter-wave plate in front of the PBS. However, experimentally it is more convenient 
to simply rotate a wave plate than it is to insert or remove one. With this in mind, the 
experimental arrangement you will use for state measurement is depicted in  fi g.  L4.1  .    

   1.     In a computer, this is done using the function 1atan2 , tan /x y y x . 
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 As in our previous labs, detection of an idler photon at  A  prepares the signal beam 
in a single-photon state. It is the polarization state of the signal beam that is being meas-
ured. The signal beam fi rst passes through a quarter-wave plate, then a half-wave plate, 
and then strikes the PBS, which sends beams to detectors  B  and  B   . The PBS transmits 
horizontally polarized photons to detector- B . The probability that a single photon is 
transmitted by the PBS is equal to the probability of an  AB  coincidence count, and is 
determined from the measured coincidence counts by

   P AB
N

N N
AB

AB AB
( ) =

+ ′
  . (L4.8)

  In the lab ticket you will show that the wave-plate settings in  table  L4.1   allow you 
to obtain measurements in the three needed bases.        
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  Fig L4.1     The experimental apparatus for polarization state measurement. Here   /2 denotes 
a half-wave plate,   /4 denotes a quarter-wave plate, DC denotes the downconversion crystal, 
PBS denotes a polarizing beam splitter, FFC denotes fi ber-to-fi ber coupler, and SPCMs denotes 
the single-photon-counting modules.   

     Table L4.1     The wave-plate settings needed to perform measurements in the 
indicated bases.         

   Basis  Fast Axis of Quarter-Wave Plate  Fast Axis of Half-Wave Plate     

  HV   0 o   0 o    
  LR   45 o   0 o    
 ±45  45 o   22.5 o    
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   L4.2    ALIGNMENT   

 As can be seen by comparing  fi gs.  L4.1  and  L2.1  , the experimental apparatus for this 
lab is nearly identical to that of lab 2. There are only two differences: In this lab there is 
a quarter-wave plate (QWP) in the signal beam, and the wave plates are on motorized 
rotation stages, so the computer can control their rotation angles. 
   
       •     Follow the procedure in lab 1 to align the crystal, and detectors  A  and  B .  
      •     Follow the procedure in lab 2 to align the polarizing beam splitter, the half-wave 

plate (HWP) and detector  B   . Do not yet insert the QWP.  
      •     Run the LabVIEW program “QSM.vi”.   
   
 Documentation for this program comes with the software. It starts by initializing the 
counters and the motors which control the wave-plate rotation stages; this takes a few 
seconds, and the  Status  indicator reads “Initializing.” Once everything initializes, the 
 Status  should switch to “Reading Counters.” The program is now reading the counters, 
and updating the screen in real time. When the program is done initializing, the QWP 
and HWP angles are set to 0 (double check that the  QWP Position  and  HWP Position  
parameters read 0). 
   
       •     The wave-plate angles are changed by fi rst entering the desired rotation angle into the 

parameters  QWP (HWP) Desired Position  and then pressing  Move Motors . Check 
that this is working properly by entering 45 for  HWP Desired Position , then press-
ing  Move Motors . The HWP should rotate, and  HWP Position  should now read 45.  

      •     Set  HWP Desired Position  to 0, then press  Move Motors , in order to rotate the 
HWP back to 0°.  

      •     While  HWP Position  should now read 0,  HWP Motor Position  may not read 0; it 
will read the value given in the  HWP zero  parameter. The  HWP zero  and  QWP zero  
parameters are needed because the 0 angles of the motors are not necessarily per-
fectly aligned with the 0 angles of the wave plates. For an accurate state measure-
ment, we need to make sure that these parameters are properly set.  

      •     I’ll assume that your downconversion source is aligned so that it is producing horizon-
tally polarized signal and idler pairs. The HWP is then properly zeroed when all of the 
photons are transmitted through the PBS to detector- B .   2    While monitoring the  AB  and 
 AB    coincidences, slightly adjust (in about 1° increments) the rotation angle of the 
HWP by entering values into  HWP Desired Position , then pushing the  Move Motors  
button. The goal is to maximize the  AB  coincidences while minimizing the  AB    coin-
cidences. Once you’ve done this, note the reading in  HWP Motor Position —this is the 
correct 0 setting for the HWP, and you should enter it into the  HWP zero  parameter.  

      •     Once the correct  HWP zero  value has been entered, the program must be stopped 
and then restarted in order to recognize the new value. Write down the correct value, 
because any time you quit and restart LabVIEW you may need to reenter it.   

   

    2.     If your source produces vertically polarized pairs, you want all the photons to be refl ected by the PBS 
and sent to detector- B   . 
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 Now that the HWP is properly zeroed, you need to insert and zero the QWP. 
     
       •     Insert the QWP between the downconversion source and the HWP (insert it near the 

HWP) and orient it perpendicular to the beam. You can use the alignment laser for 
this, but that’s probably not necessary. Set the QWP at the same height as the HWP, 
and insert it into the beam. Slide the QWP back and forth perpendicular to the beam 
while monitoring the count rates. If the count rates decrease then the beam is being 
clipped; adjust the wave plate position so that it does not clip the beam.  

      •     Set both  QWP Desired Position  and  HWP Desired Position  to 0, and press  Move 
Motors .  

      •     While monitoring the  AB  and  AB    coincidences, slightly adjust (in about 1° incre-
ments) the rotation angle of the QWP by entering values into  QWP Desired Posi-
tion , then pushing the  Move Motors  button. The goal is to maximize the  AB  
coincidences while minimizing the  AB    coincidences.   3    Once you’ve done this, note 
the reading in  QWP Motor Position —this is the correct 0 setting for the QWP, and 
you should enter it into the  QWP zero  parameter.  

      •     Once again, after the correct  QWP zero  value has been entered, the program must be 
stopped and then restarted in order to recognize the new value. Write down the correct 
value, because any time you quit and restart LabVIEW you may need to reenter it.   

   

        L4.3     MEASUREMENT OF LINEAR POLARIZATION STATES   

           •     Set both  QWP Desired Position  and  HWP Desired Position  to 0, and then press 
 Move Motors . If your source produces horizontally polarized photons, the  AB  coin-
cidences should be maximized, while the  AB    coincidences should be minimized.  

      •     In the  Data Taking Parameters  box set  Update Period (Data Run)  to 5.0s, and  No. 
Of Samples  to 10, then push the  Take Data  button.   

   
   Control of the computer is now switched to the data acquisition program. This pro-

gram requires nothing from you; it automatically adjusts the wave plates to the correct 
angles (given in  table  L4.1  ), calculates probabilities, determines the parameters  a ,  b , 
and   φ , and saves the data to a fi le. For the parameters you just entered the data run will 
take approximately 2 1/2 min. There is no graceful way to exit this program while it is 
still running, and if you exit in the middle by closing the window, chances are you’ll 
need to reboot the computer—better to just let it run. 
   
       •     The program is done running when the  Operation  box reads “Finished.” The data 
fi le is automatically named according to the date and time. In your notebook record 
the fi lename, important parameters ( Update Period ,  No. Of Samples ), and results 
( a ,  b , and   φ , errors, probabilities, etc.). 

    3.     Again, this assumes horizontally polarized photons coming out of the downconversion crystal. For 
vertically polarized photons, maximize  AB    and minimize  AB .  
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             Q1: Is the state determined by the program the state you expect? Explain why or 
why not.  

            Q2: If either of the parameters  a  or  b  is very small, then   φ  is not really meaningful. 
Explain why this is so.   

     
 Now look at some other polarization states. 
     
       •     Insert a HWP in the beam between the downconversion crystal and the QWP. You’ll 

use this HWP to rotate the polarization coming from the downconversion crystal, to 
generate different linear polarization states. As such, we’ll refer to this HWP as the 
“state-generation” HWP.  

      •     Use the state-generation HWP to generate the state   +45  . When creating this state, 
fi rst set the HWP to the angle that you think it should be at. You can fi ne-tune the angle 
by setting the measurement wave plates to 0°, and adjusting the state-generation HWP 
so that   P H ψ( )  is what you would expect for the state. The indicator  P(AB)  is useful 
for this, because with the measurement wave plates set to 0°, it reads   P H ψ( ) .  

      •     Collect a data set to determine the state. 

             Q3: For this state, calculate the expected values of the parameters  a ,  b , and   φ , and 
compare them to the measured values. Do this before proceeding, because if 
you fi nd that you’ve created the state   −45   instead of   +45  , chances are that 
you’re rotating the state-generation HWP in the wrong direction.   

       •     Now generate and perform a state measurement for each of the polarization states 
  −45   and   +30  . Once again, fi rst set the state-generation HWP to the angle that you 
think it should be at, then fi ne tune it by monitoring  P(AB) . 

             Q4: For each of these states, calculate the expected values of the parameters  a ,  b , 
and   φ , and compare them to the measured values.   

     

        L4.4     MEASUREMENT OF CIRCULAR AND ELLIPTICAL 
POLARIZATION STATES   

           •     Remove the state-generation HWP and replace it with a state-generation QWP. You’ll 
use this QWP to generate different circular/elliptical states.  

      •     Use the state-generation QWP to generate the state   L  . When creating the state, fi rst 
set the QWP to the angle that you think it should be at. You can fi ne-tune the angle 
by setting the measurement wave plates to 0°, and monitoring  P(AB) .  

      •     Collect a data set to determine the state. 



LAB  4 : QUANTUM STATE  MEASUREMENT   •   481 

             Q5: For this state, calculate the expected values of the parameters  a ,  b , and   φ , and 
compare them to the measured values. Do this before proceeding, because if 
you fi nd that you’ve created the state   R   instead of   L  , chances are that you’re 
rotating the QWP that is producing the state in the wrong direction.   

       •     Now generate and perform a state measurement of the state   R  .  
      •     Finally, rotate your QWP axis to 15°, and perform a state measurement. 

             Q6: For each of the circular/elliptical polarization states above, calculate the ex-
pected values of the parameters  a ,  b , and   φ , and compare them to the measured 
values. (NOTE: the program calculates  a  assuming that it is real. This means 
you must factor out any overall phase factor in your calculations, to get your 
results to agree with the program.)        

              L4.5  References  

    [L4.1]  J.B. Altepeter, E.R. Jeffrey, P.G. Kwiat, “Photonic state tomography,” in  Advances In 
Atomic, Molecular, and Optical Physics , P.R. Berman and C.C. Lin, eds. (Elsevier, Amster-
dam, 2006), p. 105.       
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         LAB 5 

Testing Local Realism  

  LAB TICKET 

      Create a spreadsheet that calculates   P −( )α α,  ,   P β β,−( ) ,   P β α, ⊥( ) ,   P − −( )⊥α β,  , and 
 H , given the state   ψ1   in eq. (L5.13) below. For the fi xed value   α = 35o , make plots of 
  P β α, ⊥( ) ,   P − −( )⊥α β,  , and  H  as functions of    (use values of    between 0 o  and 90 o ). 
How can you maximize  H , while still keeping   P β α, ⊥( ) ,   P − −( )⊥α β,   less than 0.01?    

   L5.1    INTRODUCTION   

 In this experiment you will be testing local realism. By local we mean that measure-
ments performed in one place cannot affect the outcomes of measurements preformed 
somewhere else. By realism we mean that objects have values for measurable quanti-
ties, regardless of whether or not we measure them. According to local realism, if two 
photons are produced by a source, their polarizations are completely defi ned once they 
leave the source. Thus, polarization measurements performed on one photon should not 
affect the results of polarization measurements performed on the other photon. 

 Local realism is common sense, and all classical systems are bound by it. However, 
as you will demonstrate in this lab, quantum systems are not constrained by local real-
ism. In order to explain the results of certain experiments we must abandon either 
locality or reality. 

 You will be testing local realism using the method suggested by Lucian Hardy that 
we discussed in sec. 8.4 and complement 8.B.   1    You will also perform another test, one 
that uses a “Bell inequality” that was originally derived by Clauser, Horne, Shimony 
and Holt (CHSH). This is a historically important test of local realism, which has been 

   1.     See also refs. [L5.1]–[L5.5].  
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around longer than Hardy’s test. We’ll describe the basics of this test below, but for 
more details see ref. [L5.6], and the references therein. 

 The experimental apparatus is shown in  fi g.  L5.1   (see also  fi g.  8.3  ). The downcon-
version source is similar to the one we’ve used in previous labs, but there’s an impor-
tant difference. There are actually 2 downconversion crystals sandwiched back-to-back, 
with their crystal axes rotated at 90 o  with respect to each other. As described in sec. 8.4, 
this source produces photons in the state

   ψ ϕ= + −a H H a e V VA B
i

A B1  . (L5.1)

Experimentally, to change the ratio of the probability of the production of horizon-
tally or vertically polarized pairs (the parameter  a ), you rotate the half-wave plate in 
the pump beam, which changes the pump polarization (e.g., if the pump has a larger 
horizontal component, then vertically polarized output photons are more likely). The 
birefringent plate in the pump beam is used to adjust the relative phase   ϕ . With this 
experimental arrangement, we can create polarization states with any arbitrary linear 
combinations of the states   H HA B  and   V VA B .    

 The idler photon travels to Alice and her two detectors ( A  and  A   ), while the signal 
photon travels to Bob and his two detectors ( B  and  B   ). We are interested in signal-idler 
pairs where Alice and Bob detect photons at the same time, and the raw data collected 
in the experiment consists of measuring numbers of coincidence counts in a given time 
window (  NAB′  is the number of coincidences between detectors  A  and  B    in a given 
counting interval, for example.) 
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  Fig L5.1     The experimental apparatus. Here   /2 denotes a half-wave plate, BP denotes a bire-
fringent plate, DC denotes the downconversion crystals, PBS denotes a polarizing beam splitter, 
FFC denotes fi ber-to-fi ber coupler, and SPCMs denotes the single-photon-counting modules.   
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 Given the four measurements of coincidence counts (  NAB ,   NAB′ ,   NA B′  , and   NA B′ ′ ) we 
can determine the probability that Alice’s and Bob’s photons had a particular set of 
polarizations. For example, assume that Alice’s half-wave plate is set to transmit pho-
tons polarized along the angle   θA  to detector  A , and Bob’s half-wave plate is set to 
transmit photons polarized along the angle   θB  to detector  B . The joint probability that 
they will measure photons polarized along these directions,   P A Bθ θ,( )  is given by

   P N
N N N NA B

AB

AB AB A B A B
θ θ,( ) =

+ + +′ ′ ′ ′
  . (L5.2 )

We will assume that in joint probabilities of the form   P A Bθ θ,( ) , the fi rst variable al-
ways refers to Alice’s polarization.    

   L5.2    THEORY     

   L5.2.1    Hardy Test   

 Hardy’s test of local realism is described in detail in sec. 8.4 and complement 8.B. 
In the idealized situation presented in sec. 8.4, this test involves testing the classical 
inequality

   P PA B A Bθ θ θ θ1 1 2 2, ,( ) ≤ ( )  . (L5.3)

However, in complement 8.B we show that this inequality is simply a special case of the 
more general, experimentally testable, Bell-Clauser-Horne inequality [eq. (8.B.10)]:

   P P P PA B A B A B A Bθ θ θ θ θ θ θ θ1 1 2 2 1 2 2 1, , , ,( ) ≤ ( ) + ( ) + ( )⊥ ⊥   , (L5.4)

where   θ θ⊥ = ± 90o . In our experiment the angles of interest are two angles,   α  and   β , 
and their negatives. By assigning   θA1   = β ,   θB1   = −β ,   θA2   = −α  and   θB2   = α , eq. (L5.4) 
becomes

   P P P Pβ β α α β α α β, , , ,−( ) ≤ −( ) + ( ) + − −( )⊥ ⊥   . (L5.5)

It is convenient to defi ne the quantity  H , where

   H P P P P≡ −( ) − −( ) − ( ) − − −( )⊥ ⊥β β α α β α α β, , , ,   . (L5.6)

In terms of  H , the Bell-Clauser-Horne inequality is   H ≤ 0 . 
 As described in complement 8.B, if we measure   H ≤ 0 , then the data are consistent 

with local realism. If we measure   H > 0 , then local realism is violated, and we are 
forced to abandon some of our classical ideas.    
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   L5.2.2    CHSH Test   

 Here we describe the CHSH inequality, but we will not prove it. For a proof of this 
inequality, see ref. [L5.6]. 

 The CHSH inequality involves a particular combination of expectation values. Con-
sider the polarization operator defi ned in chap. 5. The eigenstates and eigenvalues of 
the polarization operator for linear polarization along the angle   θ  are

   ˆ 1 , ˆ 1   . (L5.7)

The joint polarization operator for Alice and Bob is defi ned as

   ˆ ˆ ˆAB A B
A B A B  . (L5.8)

It is traditional to represent the expectation value of this joint polarization operator as

     ˆ, , , , ,AB
A B A B A B A B A BA BE P P P P   , (L5.9)

and to defi ne the quantity  S  as

   S E E E EA B A B A B A B≡ ( ) + ( ) − ( ) + ( )θ θ θ θ θ θ θ θ1 1 2 1 2 2 1 2, , , ,   . (L5.10)

In a universe that is consistent with local realism,  S  satisfi es the inequality   S ≤ 2 , for 
any choices of the angles. 

 However, assume that the photons are prepared in the Bell state:

   φ+ = +( )1
2

H H V VA B A B   . (L5.11)

For this state, and for proper combinations of angles, quantum mechanics predicts 
  S = 2 2 , which yields a maximal violation of the CHSH inequality. 
     

               Q1: Prove that the expectation value   E A Bθ θ,( )  is given by the combination of 
probabilities in eq. (L5.9).  

            Q2: For the state   φ+  , and the angles   θA1 0= o ,   θB1 22 5= . o ,   θA2 45= o , and 
  θB 2 22 5= − . o , show that the quantum mechanical prediction yields   S = 2 2 .        

         L5.3    ALIGNMENT   

   Note to instructors: To save time in the lab, the alignment described in this section 
could be done ahead of time. Students would then begin their lab work with sec. L5.4 .  
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       •     Begin with the pump-beam half-wave plate set so that the pump is vertically polar-
ized when it strikes the downconversion crystal pair. In this orientation, only one of 
the downconversion crystals is being pumped, and the polarization state of the down-
converted photons is that of eq. (L5.1) with   a = 1 , i.e.,   ψ = H HA B .  

      •     Following the procedure in lab 1, align the crystal, and detectors  A  and  B .  
      •     Following the procedure in lab 2, align the polarizing beam splitters, wave plates, 

and detectors  A    and  B   .  
      •     So far, we have been aligning the system by pumping only one of the downconver-

sion crystals. This fi rst crystal is sensitive to tilt in one direction, but not the other. 
For a vertically polarized pump, the crystal should be sensitive to tilt in the vertical 
direction, but not in the horizontal direction.  

      •     In order to align the second crystal, rotate the pump-beam wave plate by 45°, which 
rotates the pump-beam polarization to horizontal. Now the second crystal is being 
pumped, but not the fi rst. Adjust the horizontal tilt of the crystal pair to maximize the 
count rates. The second crystal should be sensitive to this tilt, but the alignment of 
the fi rst crystal will not be affected because it is not sensitive to this tilt. This tilt is 
the only adjustment you should need to make in order to align the second crystal, and 
complete the alignment.   

   
   In the next section, you will adjust the pump-beam wave plate and the birefringent 
plate, in order to create the proper polarization-entangled state.    

   L5.4    CREATING THE BELL STATE   

     
       •     Run the LabVIEW program “Angle_scan.vi”.   
   
   Documentation for this program comes with the software. It starts by initializing the 
counters and the motors which control the wave-plate rotation stages; this takes a few 
seconds and the  Status  indicator reads “Initializing.” Once everything initializes, the 
 Status  should switch to “Reading Counters.” The program is now reading the counters 
and updating the screen in real time. 
     
       •     Make sure that  Update Period  is set to somewhere between 0.2s and 1s. Set the 

 Subtract Accidentals?  switch to  Yes ; check with your instructor about what coinci-
dence time resolutions you should use.   

   
   As you learned in lab 1 (sec. L1.7), there are always some background “accidental” 

coincidences that are detected, even when you don’t expect to get any. This is due to the 
randomness of the photon emission process. By knowing the count rates and coinci-
dence time resolution, we can calculate how may accidental coincidences we would 
expect to get, and subtract these accidentals from the raw count rates to correct the data. 
For now we’ll subtract them, but later you can explore what happens if you don’t. 
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 When the program is done initializing, the  A  and  B  wave plate angles are set to zero 
(double check that the  A Position  and  B Position  parameters read 0). With these wave 
plates settings the  A  and  B  detectors monitor horizontally polarized photons coming 
from the source, and the  A    and  B    detectors monitor vertically polarized photons. 
Recall that the state of the downconverted photons is given by eq. (L5.1), with the 
parameters  a  and   ϕ  determined by the settings of the half-wave plate and the birefrin-
gent plate in the pump beam. 
   
       •     Adjust the pump-beam half-wave plate to roughly equalize the  AB  coincidences and 

 A  B    coincidences. Given that the source produces photons in the state of eq. (L5.1), 
and the wave-plate axes are set to 0°, you should notice that there are  AB  and  A  B    
coincidences, but essentially no  A  B  or  AB    coincidences (there are always a few due 
to experimental imperfections). 

             Q3: Why is this? Calculate the probability of an  A  B  or  AB    coincidence given the 
state in Eq. (L5.1).   

       •     If you do notice signifi cant  A  B  or  AB    coincidences, it probably means that the  A  
and/or  B  wave plates are not properly zeroed. Enter 0 for the  A Desired Position  and 
the  B Desired Position  parameters, then push the  Move Motors  button. The wave 
plates should rotate to 0:  A Position  and  B Position  should read 0. Note, however, 
that the  A Motor Position  and  B Motor Position  displays will not necessarily read 
zero; they will read the values given in the  A zero  and  B zero  parameters. These 
parameters are needed because the 0 angles of the motors are not necessarily per-
fectly aligned with the 0 angles of the wave plates.      
     Slightly adjust (in about 1° increments) the rotation angles of the wave plates by 
entering values into  A Desired Position  and the  B Desired Position  parameters, 
then push the  Move Motors  button. Once you’ve minimized the  A  B  and  AB    coin-
cidences, note the readings in the  A Motor Position  and  B Motor Position —these 
are the correct 0 readings, and you should enter them as the  A zero  and  B zero  
parameters.    

       •     Once the correct  A zero  and  B zero  parameters have been entered, the program must 
be stopped and then restarted in order to recognize the new values. Write down these 
correct values, because any time you quit and restart LabVIEW you may need to 
reenter them.  

      •     Rotate the wave plate in the pump beam by about 10°, then wait a few seconds for 
the computer to catch up with readings at this new setting.   

   
   Notice that no matter how you set the polarization of the pump beam, you can change 
the ratio of the  AB  and  A  B    coincidences, but you should never produce any signifi -
cant  A  B  or  AB    coincidences. 
     
       •     Adjust the wave plate in the pump beam so that the  AB  and  A  B    coincidence rates 

are roughly the same.  
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      •     Enter 0 for the  A Desired Position  and 45 for the  B Desired Position  parameters, 
then push the  Move Motors  button.   

            Q4: What happens to the coincidence rates? Explain this.    

      •     You may want to adjust the  Update Period . If it is too short the counts will fl uctuate 
a lot, and it will be diffi cult to get a good reading. If it is too long you need to adjust 
things very slowly, and wait for the screen to catch up. Values between 0.2 and 1.0 s 
should work, depending on your count rates. You’ll also need to adjust the full scale 
reading on your meters.  

      •     Set the  A  and  B  wave plates to 0°. Adjust the pump-beam half-wave plate so that the 
ratio of the  AB  and  A  B    coincidences is roughly 1:1.  

      •     Now use the motors to set the  A  and  B  wave plates to 22.5°. Adjust the tilt of the bire-
fringent plate in the pump beam (NOT the pump-beam half-wave plate) to minimize 
the  A  B  and  AB    coincidences. You won’t be able to get these coincidences to be as 
low as with the wave plates set to zero, but you should be able to get them fairly low.  

      •     Iterate back-and-forth between the last two steps. With the  A  and  B  wave plates set 
to 0°, adjust the ratio of the  AB  and  A  B    coincidences to be equal using the pump-
beam half-wave plate; with the  A  and  B  wave plates set to 22.5°, minimize the  A  B  
and  AB    coincidences with the tilt of the birefringent plate. You should notice that 
even with the  A  and  B  wave plates set to 22.5°, the ratio of the  AB  and  A  B    coinci-
dences should still be roughly 1:1.   

   
   Now the state of your downconverted photons should be given approximately by the 

Bell state   φ+   of eq. (L5.11). Consider how we know this: 
   

               Q5: With the  A  and  B  wave plates set to 0°, detectors  A  and  B  are measuring horizon-
tally polarized photons from the source, and detectors  A    and  B    are measuring 
vertically polarized photons from the source. If the  AB  and  A  B    coincidences are 
equal, what do we know about the parameter  a  in eq. (L5.1)? Do we know anything 
yet about the parameter   ϕ ? Write down the state produced by the source, assuming 
  ϕ  to be unknown.   

     
   Measurements with the wave plates set to 0° determines the parameter  a , but not   ϕ . 

In order to determine   ϕ , you need to use the results of your measurements with the 
wave plates set to 22.5°.      

               Q6: Given the state you wrote down in the last question, what must   ϕ  be in order 
to explain the fact that the probability of an  A  B  (or an  AB   ) coincidence is 0 
with the  A  and  B  wave plates set to 22.5°? (Ignore your experimental inability 
to make this coincidence rate perfectly 0.) Write down the state produced by the 
source.  
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            Q7: Given the state you just determined, calculate the joint probability   P A Bθ θ,( )  
that Alice will measure her photon to be polarized along   θA , and Bob will fi nd 
his photon polarized along   θB .        

        L5.5    EXPLORING QUANTUM CORRELATIONS—ENTANGLED 
STATES AND MIXED STATES   

 Before you actually try to test local realism, you’ll fi rst explore some of the interesting 
correlations that allow quantum mechanics to violate it. 

 Now you’re ready to scan one of the wave-plate angles, and measure the joint prob-
ability   P A Bθ θ,( ) . The program “Angle_scan.vi” is designed to fi x   θA , and scan   θB  over 
a preset range of angles.  NOTE: the computer scans (and records in a datafi le) a 
 wave-plate  angle, whereas when we talk about    P A Bθ θ,( )  , the angles    θA   and    θB   
refer to the angles of a  polarizer . Remember that polarizer angles are twice the 
wave plate angles, because the angle of the output polarization from a wave plate 
rotates twice as fast as the rotation angle of the wave plate.  
   
       •     In the  Data Taking Parameters  section, set  A  to 0 (this is the fi xed wave-plate 

angle), then take a scan with 5 samples per point with counting times of 3–5 s per 
sample. This data fi le will automatically be saved. Note that the computer acquires 
data at 17 values of the  B  wave-plate angle between 0 o  and 90 o .  

      •     Repeat this experiment with  Angle A  set to 22.5° (corresponding to a polarizer angle 
of 45°).   

   
   In your lab report you should create two graphs. The fi rst is theory and experiment 

for   P A Bθ θ=( )0o ,  , and the second for   P A Bθ θ=( )45o ,  . Plot the theory as a solid line 
and the data as points. For the theory curves, use the probabilities you obtained in Q7. 

 In  chapter  8  , we talked about the difference between an entangled state and a mixed 
state. Equation (L5.11) assumes an entangled state—in other words, that at any given 
time the photons are in both the states   H HA B  and   V VA B . Is this assumption cor-
rect? Can we explain our data instead assuming that the photons are in a classical mix-
ture of either the   H HA B  or   V VA B  states? 
   

               Q8: Calculate the probability   P H HA B A Bθ θ, ,( ) —the joint probability that Alice 
will measure her photon to be polarized along   θA  and Bob will fi nd his photon 
polarized along   θB , assuming that the photons are in the state   H HA B .  

            Q9: Calculate the probability   P V VA B A Bθ θ, ,( ) .  
            Q10: If you refer back to sec. 8.3, you’ll see that the probability of joint polarization 

measurements in a mixed state is        
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     P P H H P H H P V V P V Vmix A B A B A B A B A B A B A Bθ θ θ θ θ θ, , , , , , ,( ) = ( ) ( ) + ( ) ( )  , (L5.12)

 where   P H HA B,( )  is the probability that the photons are produced in the state 
  H HA B , and similarly for   P V VA B,( ) . These probabilities are both 1/2 here. 

Calculate   Pmix A Bθ θ,( ) . 
 On your two graphs of   P A Bθ θ,( ) , add graphs of   Pmix A Bθ θ,( ) , for appropriate 

values of   θA ; plot   Pmix A Bθ θ,( )  as a dashed line. 
     

               Q11: Is it possible to explain your experimental data using this mixed state? If not 
with this mixed state, can you think of any mixed state that will agree with both 
of your data sets? By this I mean, are there any   P H HA B,( )  and   P V VA B,( )  that 
will allow   Pmix A Bθ θ,( )  to agree with both data sets?   

     
   Remember, if the data are consistent with an entangled state, we must conclude that 

although the polarizations of the two photons are perfectly correlated with each other, 
neither photon is in a well-defi ned state before a measurement.    

   L5.6    TESTING THE CHSH INEQUALITY   

 The Bell state   φ+   you’ve created is the ideal state to test the CHSH inequality, so let’s 
perform this test. 
   
       •     Close “Angle_scan.vi,” as it cannot be in memory while running “Hardy-Bell.vi.”  
      •     Open the LabVIEW program “Hardy-Bell.vi”, set the A zero and B zero parameters 

to the values you previously determined, then run the program.  
      •     Set the  Experimental Setup  dial to  S , and  Update Period  to something between 0.2 

and 1.0s. Set the  Subtract Accidentals?  switch to  Yes .  
      •     Double check that you’re in the Bell state   φ+  . The  AB  and  A  B    coincidences 

should be roughly equal, and these coincidences should be maximized while the  A  B  
and  AB    coincidences are minimized. This should be true with the  A  and  B  wave 
plates at both 0 o  and 22.5 o . A good fi gure of merit for this is the “E-meter”—the big 
blue bar on the right. The E-meter reads the expectation value   E A Bθ θ,( )  of eq. 
(L5.9), which is 1 if  A  B  and  AB    are 0. Your goal is to maximize   E A Bθ θ,( )  at both 
wave plate settings.  

      •     In the  Data Taking Parameters  box set  Update Period (Data Run)  to 5 s, and  No. 
of Samples  to 10, then push the  Take Data  button.   

   
   Control of the computer is now switched to the data acquisition program. This pro-

gram requires nothing from you; it automatically adjusts the wave plates to the correct 
angles (corresponding to the polarizer angles given in Q2 above), makes readings, cal-
culates expectation values and  S , and saves the data to a fi le. For the parameters you 
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just entered the data run will take approximately 4 min. There is no graceful way to exit 
this program while it is still running, and if you exit in the middle by closing the win-
dow, chances are you’ll need to reboot the computer—better to just let it run. 
   
       •     The program is done running when the  Operation  box reads “Finished.” The data 
fi le is automatically named according to the date and time. In your notebook record 
the fi lename, important parameters ( Update Period ,  No. of Samples ), and results ( S , 
errors, etc.). The  Violations  parameter gives the number of standard deviations by 
which your result violates local realism.   

   
   Try and get a result that violates local realism by at least 10 standard deviations. If 

your value for  S  is greater than 2, but you don’t have a 10 standard deviation violation, 
use more than 5 s per point to decrease the error (the error given is the standard devia-
tion of the  No. of Samples  measurements of  S ). If   S < 2  you probably need to tweak the 
state using the wave plate and the birefringent plate in the pump beam. You shouldn’t 
have too much diffi culty getting an  S  value of at least 2.3.    

   L5.7    MEASURING  H    

 Now you’re ready to perform Hardy’s test of local realism. 
 As discussed above, you’ll be measuring the quantity  H , which depends on several 

probabilities, all determined by the parameters    and   . Maximum violation of local 
realism can be achieved using either of the states

   ψ1 0 2 0 8= +. .H H V VA B A B  , (L5.13) 

    ψ2 0 8 0 2= +. .H H V VA B A B  . (L5.14)

We’ll start with   ψ1  , for which the angle parameters are   α = 35o  and   β = 19o . Of course, 
experimentally it is diffi cult to produce exactly the state   ψ1  , so optimal violation may 
occur for slightly different values of    and   . You’ll begin by attempting to produce 
state   ψ1  , and assuming   α = 35o  and   β = 19o . The magnitudes of the amplitudes of the 
states in eqs. (L5.13) and (L5.14) are set by monitoring the coincidence probabilities 
with the  A  and  B  half-wave plates set at 0°. The relative phase of the states is adjusted 
by attempting to ensure that   P −( ) =α α, 0 . 
     
       •     Run the LabVIEW program “Hardy-Bell.vi.”  
      •     Make sure the  Experimental Setup  dial is set to  H , and that  Update Period  is set to 

between 0.2 and 1.0s. Set the  Subtract Accidentals?  switch to  Yes .  
      •     Make sure that  Alpha  is set to 35° and  Beta  is set to 19°. You’ll notice that in the 

lower right hand portion of the screen,  H HWP Measurement Angles  are displayed. 
These are the angles that the half-wave plates will need to be set to, in order to mea-
sure the four probabilities that comprise  H  [eq. (L5.6)]; they are determined from the 
 Alpha  and  Beta  parameters entered on the left of the screen (remember that the 
polarization rotates through an angle 2   when the wave plate rotates by   ).  
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      •     Set the  A  and  B  wave plates to 0°. Adjust the pump-beam wave plate so that the ratio 
of the  AB  and  A  B    coincidences is roughly 1:4. This is most easily done by watching 
the  P Meter , which reads the probability of an  AB  coincidence. You would like it to 
read 0.2.  

      •     Set the  A  and  B  wave plates so that you are measuring   P −( )α α,  . Adjust the tilt of 
the birefringent plate to minimize this probability.  

      •     Iterate back-and-forth between the last two steps. With the  A  and  B  wave plates set 
to 0° adjust the ratio of the coincidences using the pump-beam wave plate; with the 
wave plates set to measure   P −( )α α,  , minimize this probability with the tilt of the 
birefringent plate. When you’ve got everything adjusted fairly well, set  Update 
Period  to at least 1.0 s, to get better statistics.  

      •     Set your wave plates to measure   P β α, ⊥( )  and   P − −( )⊥α β,  . These probabilities 
should be fairly small. Set your wave plate to measure   P β β,−( ) ; this probability 
should be larger than the others.   

   
   By now the pump-beam wave plate and the birefringent plate should be reasonably 

well adjusted to produce the state   ψ1  . You’re ready to take a data run which measures  H . 
   
       •     In the  Data Taking Parameters  box set  Update Period (Data Run)  to 10.0 s, and 

 No. Of Samples  to 5, then push the  Take Data  button.   
   

   Control of the computer is now switched to the data acquisition program. This pro-
gram requires nothing from you, it automatically adjusts the wave plates to the correct 
angles, makes readings, calculates probabilities and  H , and saves the data to a fi le. 
   
       •     The program is done running when the  Operation  box reads “Finished.” The data 
fi le is automatically named according to the date and time. In your notebook record 
the fi lename, important parameters ( Alpha ,  Beta ,  Update Period , angle of the pump 
wave plate, etc.), and results ( H , probabilities, errors, etc.).  

      •     Once you have written down all of these parameters, you can close the window of the 
data recording program.      

        L5.8    OPTIMIZING YOUR RESULTS   

 How do your data look? Chances are you measured a value for  H  that was less than 0; 
or maybe it was greater than 0, but not by very much (the  Violations  result tells you 
by how many standard deviations your value of  H  exceeds 0). You’d really like to see 
values of 0.02 or less for the three probabilities that you expect to be 0, and you’d like 
to see 10 or more violations. This would be a very convincing result. 

 You can increase the number of violations you get by either increasing  H , or decreas-
ing the error. At the same time, you’d like to make sure that you stay below 0.02 or 0.03 
for the probabilities you expect to be 0. For a reasonable error measurement you should 
be using at least 10 for the  No. of Samples  parameter (we only used 5 for the fi rst data 
set because we wanted to get a quick run). Your fi nal data runs should always include 
at least 10 samples. Increasing the  No. of Samples  parameter will not decrease the 
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error, it will only make the error measurement more accurate (the error is the standard 
deviation of the  No. of Samples  measurements of  H ). The only good way to decrease 
the error of your measurement is to increase the  Update Period (Data Run)  parameter, 
which increases the time for a data run. 

 In order to increase  H , you need to increase   P β β,−( ) , while trying to keep all the 
rest of the probabilities on the order of 0.02. How do you do this? Start by using the 
results of your lab ticket. Assuming the value for    is unchanged, how do you adjust    
in order to increase  H ? Remember that you need to keep three of your probabilities 
down around 0.02. 
   
       •     Rerun the program using a new value for  Beta .  
      •     Double check the alignment of the pump-beam wave plate and the birefringent plate. 

With the  A  and  B  wave plates set to 0° adjust the ratio of the coincidences using the 
pump wave plate; with the wave plates set to measure   P −( )α α,  , minimize this prob-
ability with the tilt of the birefringent plate.  

      •     Take another data run.   
   

   Keep adjusting your parameters, and retaking data, until you get at least a 10 stand-
ard deviation violation of local realism, with 3 of your probabilities as low as reason-
ably possible (a few percent). This data run needs to use at least 10 samples.   

   L5.8.1    Optimization Hints   

 Don’t stress too much about getting   P −( )α α,   super low by tweaking the pump-beam 
wave plate and the birefringent plate—it should be down near 0.02 or 0.03, but it’s 
been my experience that this is the most diffi cult of the probabilities to get very low. 
I’ve found that the main parameter to adjust is  Beta , while adjustments of  Alpha  will 
help some as well. 

 Once you’ve got your value for  H  up to 0.05 or above, the best way to increase your 
number of violations is to decrease your error by taking longer data runs with an 
increased  Update Period (Data Run).  

 I know it can be tedious making small adjustments to parameters, and waiting 10 
minutes or so for a data run to complete. Having the computer fi nish taking data, and 
then simply spit out a value for  H  can be somewhat anti-climactic. However, try not to 
lose sight of the big picture. Remember the argument in chap. 8 that a value of   H > 0  
means that local realism is violated. When you’re all done, you’ll have proven that clas-
sical mechanics doesn’t always work! 

 For all of the above experiments you’ve been subtracting the accidental coinci-
dences. Once you’ve gotten a convincing result, turn off the accidentals subtraction, 
but leave everything else the same. How does this affect your results?     
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   L5.9    LAST EXPERIMENT   

 Redo what you’ve done above using the state   ψ2   of eq. (L5.14). 
 Note that this is a different state, so it will require different values for    and   . 

Remember: don’t just change    and   — you have to adjust the pump-beam wave 
plate and the birefringent plate to change the state.  Think about how you’ll have to 
adapt the procedure described above to create the state   ψ2  . 
     

               Q12: For the state   ψ2  , what values of    and    will yield 0 for   P −( )α α,  ,   P β α, ⊥( ) , 
and   P − −( )⊥α β,  ? Start by fi nding the value for    by looking at   P −( )α α,  , then 
fi nd   . You may fi nd it useful to redo the lab ticket using the state   ψ2  , and 
these new values of    and   .        
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